Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 6(5): 1507-1523, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38419879

ABSTRACT

In advanced electronics, supercapacitors (SCs) have received a lot of attention. Nevertheless, it has been shown that different electrode designs that are based on metal sulfides are prone to oxidation, instability, and poor conductance, which severely limits their practical application. We present a very stable, free-standing copper-cobalt sulfide doped with polyaniline as an electrode coated on nickel foam (CuCoS/PANI). The lightweight nickel foam encourages current collection as well as serving as a flexible support. The CuCoS-PANI electrode had a substantially greater 1659 C g-1 capacity at 1.0 A g-1. The asymmetric supercapacitor (ASC) can provide an impressive 54 W h kg-1 energy density while maintaining 1150 W kg-1 power. Additionally, when employed as an electrocatalyst in the oxygen evolution reaction, CuCoS/PANI exhibited a 200 mV overpotential and 55 mV dec-1 Tafel slope, demonstrating its effectiveness in facilitating the reaction.

2.
Biochim Biophys Acta Gen Subj ; 1868(3): 130543, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38103758

ABSTRACT

Novel biocompatible and effective hyperthermia (HT) treatment materials for breast cancer therapeutic have recently attracting researchers, because of their effective ablation of cancer cells and negligible damage to healthy cells. Magnetoliposome (MLs) have numerous possibilities for utilize in cancer treatment, including smart drug delivery (SDD) mediated through alternating magnetic fields (AMF). In this work, magnesium ferrite (MgFe2O4) encapsulated with liposomes lipid bilayer (MLs), Quercetin (Q)-loaded MgFe2O4@Liposomes (Q-MLs) nano-hybrid system were successfully synthesized for magnetic hyperthermia (MHT) and SDD applications. The hybrid system was well-investigated by different techniques using X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), Energy dispersive X-ray (EDX), Vibrating sample magnetometer (VSM), Transmission electron microscope (TEM), and Zeta Potential (ZP). The characterization results confirmed the improving quercetin-loading on the MLs surface. TEM analysis indicated the synthesized MgFe2O4, MLs, and Q-MLs were spherical with an average size of 23.7, 35.5, and 329.5 nm, respectively. The VSM results revealed that the MgFe2O4 exhibit excellent and effective saturation magnetization (MS) (40.5 emu/g). Quercetin drug loading and entrapment efficiency were found to be equal to 2.1 ± 0.1% and 42.3 ± 2.2%, respectively. The in-vitro Q release from Q-loaded MLs was found 40.2% at pH 5.1 and 69.87% at pH 7.4, verifying the Q-loading pH sensitivity. The MLs and Q-MLs hybrid system as MHT agents exhibit specific absorption rate (SAR) values of 197 and 205 W/g, correspondingly. Furthermore, the Q-MLs cytotoxicity was studied on the MCF-7 breast cancer cell line, and the obtained data demonstrated that the Q-MLs have a high cytotoxicity effect compared to MLs and free Q.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Humans , Female , Liposomes/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Breast Neoplasms/drug therapy , Lipid Bilayers , MCF-7 Cells , Spectroscopy, Fourier Transform Infrared , Hyperthermia, Induced/methods , Magnetic Phenomena
3.
PLoS One ; 18(11): e0287322, 2023.
Article in English | MEDLINE | ID: mdl-37992124

ABSTRACT

In this study, zinc-oxide (ZnO) nanoparticles (NPs) doped with cobalt (Co) were synthesized using a simple coprecipitation technique. The concentration of Co was varied to investigate its effect on the structural, morphological, optical, and dielectric properties of the NPs. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of both undoped and Co-doped ZnO-NPs. Scanning electron microscopy (SEM) was used to examine the morphology of the synthesized NPs, while energy-dispersive X-ray spectroscopy (EDX) was used to verify their purity. The band gap of the NPs was evaluated using UV-visible spectroscopy, which revealed a decrease in the energy gap as the concentration of Co2+ increased in the ZnO matrix. The dielectric constants and AC conductivity of the NPs were measured using an LCR meter. The dielectric constant of the Co-doped ZnO-NPs continuously increased from 4.0 × 10-9 to 2.25 × 10-8, while the dielectric loss decreased from 4.0 × 10-8 to 1.7 × 10-7 as the Co content increased from 0.01 to 0.07%. The a.c. conductivity also increased with increasing applied frequency. The findings suggest that the synthesized Co-doped ZnO-NPs possess enhanced dielectric properties and reduced energy gap, making them promising candidates for low-frequency devices such as UV photodetectors, optoelectronics, and spintronics applications. The use of a cost-effective and scalable synthesis method, coupled with detailed material characterization, makes this work significant in the field of nanomaterials and device engineering.


Subject(s)
Nanoparticles , Zinc Oxide , Zinc Oxide/chemistry , Nanoparticles/chemistry , Oxides , Cobalt/chemistry , X-Ray Diffraction
4.
RSC Adv ; 9(65): 38001-38010, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-35541797

ABSTRACT

We have investigated the magnetic properties of ZnCoO thin films grown by pulsed laser deposition from targets made from pure ZnO combined with metallic Co, CoO or Co3O4 as a function of oxygen pressure in the deposition chamber. We find that the structural and magnetic properties of films grown from targets containing CoO or Co3O4 are similar and can be mapped on to each other by assuming that the films made from CoO require some additional oxygen to make them the same as those grown from Co3O4. The data suggest that the magnetism in these films is due to oxygen vacancies. Radically different properties are seen for the films grown with metallic Co in the target. In this case, there is structural evidence for the production of Zn vacancies as oxygen was added during deposition and this was accompanied by a strong increase of the magnetisation. In contrast, there was very little difference seen between the magnetic properties of the targets, which were all found to be paramagnetic, even after further annealing in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...