Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10667, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724576

ABSTRACT

The study introduces a new online spike encoding algorithm for spiking neural networks (SNN) and suggests new methods for learning and identifying diagnostic biomarkers using three prominent deep learning neural network models: deep BiLSTM, reservoir SNN, and NeuCube. EEG data from datasets related to epilepsy, migraine, and healthy subjects are employed. Results reveal that BiLSTM hidden neurons capture biological significance, while reservoir SNN activities and NeuCube spiking dynamics identify EEG channels as diagnostic biomarkers. BiLSTM and reservoir SNN achieve 90 and 85% classification accuracy, while NeuCube achieves 97%, all methods pinpointing potential biomarkers like T6, F7, C4, and F8. The research bears implications for refining online EEG classification, analysis, and early brain state diagnosis, enhancing AI models with interpretability and discovery. The proposed techniques hold promise for streamlined brain-computer interfaces and clinical applications, representing a significant advancement in pattern discovery across the three most popular neural network methods for addressing a crucial problem. Further research is planned to study how early can these diagnostic biomarkers predict an onset of brain states.


Subject(s)
Biomarkers , Brain , Electroencephalography , Epilepsy , Migraine Disorders , Neural Networks, Computer , Humans , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/physiopathology , Biomarkers/analysis , Pilot Projects , Migraine Disorders/diagnosis , Migraine Disorders/physiopathology , Brain/physiopathology , Deep Learning , Algorithms , Male , Adult , Female
2.
Front Robot AI ; 10: 1226028, 2023.
Article in English | MEDLINE | ID: mdl-37621315

ABSTRACT

Introduction: The challenge of navigating a Mobile robot in dynamic environments has grasped significant attention in recent years. Despite the available techniques, there is still a need for efficient and reliable approaches that can address the challenges of real-time near optimal navigation and collision avoidance. Methods: This paper proposes a novel Log-concave Model Predictive Controller (MPC) algorithm that addresses these challenges by utilizing a unique formulation of cost functions and dynamic constraints, as well as a convergence criterion based on Lyapunov stability theory. The proposed approach is mapped onto a novel recurrent neural network (RNN) structure and compared with the CVXOPT optimization tool. The key contribution of this study is the combination of neural networks with model predictive controller to solve optimal control problems locally near the robot, which offers several advantages, including computational efficiency and the ability to handle nonlinear and complex systems. Results: The major findings of this study include the successful implementation and evaluation of the proposed algorithm, which outperforms other methods such as RRT, A-Star, and LQ-MPC in terms of reliability and speed. This approach has the potential to facilitate real-time navigation of mobile robots in dynamic environments and ensure a feasible solution for the proposed constrained-optimization problem.

3.
Sci Rep ; 11(1): 12064, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103545

ABSTRACT

This paper proposes a novel method and algorithms for the design of MRI structured personalized 3D spiking neural network models (MRI-SNN) for a better analysis, modeling, and prediction of EEG signals. It proposes a novel gradient-descent learning algorithm integrated with a spike-time-dependent-plasticity algorithm. The models capture informative personal patterns of interaction between EEG channels, contrary to single EEG signal modeling methods or to spike-based approaches which do not use personal MRI data to pre-structure a model. The proposed models can not only learn and model accurately measured EEG data, but they can also predict signals at 3D model locations that correspond to non-monitored brain areas, e.g. other EEG channels, from where data has not been collected. This is the first study in this respect. As an illustration of the method, personalized MRI-SNN models are created and tested on EEG data from two subjects. The models result in better prediction accuracy and a better understanding of the personalized EEG signals than traditional methods due to the MRI and EEG information integration. The models are interpretable and facilitate a better understanding of related brain processes. This approach can be applied for personalized modeling, analysis, and prediction of EEG signals across brain studies such as the study and prediction of epilepsy, peri-perceptual brain activities, brain-computer interfaces, and others.


Subject(s)
Electroencephalography/methods , Learning , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Adult , Algorithms , Brain/diagnostic imaging , Brain-Computer Interfaces , Child , Computer Simulation , Female , Humans , Imaging, Three-Dimensional , Male , Models, Neurological , Nerve Net , Neurons , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...