Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12188, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37500942

ABSTRACT

In the present study, ZnMnFeO4 and CoMnFeO4 tri-metallic spinel oxide nanoparticles (NPs) were provided using hydrothermal methods. The nanoparticles have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and electrochemical techniques. A reliable and reproducible electrochemical sensor based on ZnMnFeO4/CoMnFeO4/FTO was fabricated for rapid detection and highly sensitive determination of hydrazine by the DPV technique. It is observed that the modified electrode causes a sharp growth in the oxidation peak current and a decrease in the potential for oxidation, contrary to the bare electrode. The cyclic voltammetry technique showed that there is high electrocatalytic activity and excellent sensitivity in the suggested sensor for hydrazine oxidation. Under optimal experimental conditions, the DPV method was used for constructing the calibration curve, and a linear range of 1.23 × 10-6 M to 1.8 × 10-4 M with a limit of detection of 0.82 ± 0.09 µM was obtained. The obtained results indicate that ZnMnFeO4/CoMnFeO4/FTO nano sensors exhibit pleasant stability, reproducibility, and repeatability in hydrazine measurements. In addition, the suggested sensor was efficiently employed to ascertain the hydrazine in diverse samples of cigarette tobacco.

SELECTION OF CITATIONS
SEARCH DETAIL
...