Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Deliv ; 12(7): 1071-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25601356

ABSTRACT

INTRODUCTION: It is 23 years since carbon allotrope known as carbon nanotubes (CNT) was discovered by Iijima, who described them as "rolled graphite sheets inserted into each other". Since then, CNTs have been studied in nanoelectronic devices. However, CNTs also possess the versatility to act as drug- and gene-delivery vehicles. AREAS COVERED: This review covers the synthesis, purification and functionalization of CNTs. Arc discharge, laser ablation and chemical vapor deposition are the principle synthesis methods. Non-covalent functionalization relies on attachment of biomolecules by coating the CNT with surfactants, synthetic polymers and biopolymers. Covalent functionalization often involves the initial introduction of carboxylic acids or amine groups, diazonium addition, 1,3-dipolar cycloaddition or reductive alkylation. The aim is to produce functional groups to attach the active cargo. EXPERT OPINION: In this review, the feasibility of CNT being used as a drug-delivery vehicle is explored. The molecular composition of CNT is extremely hydrophobic and highly aggregation-prone. Therefore, most of the efforts towards drug delivery has centered on chemical functionalization, which is usually divided in two categories; non-covalent and covalent. The biomedical applications of CNT are growing apace, and new drug-delivery technologies play a major role in these efforts.


Subject(s)
Drug Delivery Systems , Nanotubes, Carbon , Pharmaceutical Preparations/administration & dosage , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Hydrophobic and Hydrophilic Interactions
2.
Expert Opin Drug Deliv ; 12(7): 1089-105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25613837

ABSTRACT

INTRODUCTION: Carbon nanotubes (CNT) have recently been studied as novel and versatile drug and gene delivery vehicles. When CNT are suitably functionalized, they can interact with various cell types and are taken up by endocytosis. AREAS COVERED: Anti-cancer drugs cisplatin and doxorubicin have been delivered by CNT, as well as methotrexate, taxol and gemcitabine. The delivery of the antifungal compound amphotericin B and the oral administration of erythropoietin have both been assisted using CNT. Frequently, targeting moieties such as folic acid, epidermal growth factor or various antibodies are attached to the CNT-drug nanovehicle. Different kinds of functionalization (e.g., polycations) have been used to allow CNT to act as gene delivery vectors. Plasmid DNA, small interfering RNA and micro-RNA have all been delivered by CNT vehicles. Significant concerns are raised about the nanotoxicology of the CNT and their potentially damaging effects on the environment. EXPERT OPINION: CNT-mediated drug delivery has been studied for over a decade, and both in vitro and in vivo studies have been reported. The future success of CNTs as vectors in vivo and in clinical application will depend on achievement of efficacious therapy with minimal adverse effects and avoidance of possible toxic and environmentally damaging effects.


Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , Nanotubes, Carbon , Animals , Antineoplastic Agents/administration & dosage , Genetic Therapy/methods , Genetic Vectors , Humans , Plasmids/administration & dosage , RNA, Small Interfering/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...