Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Transl Med ; 22(1): 520, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816723

ABSTRACT

The intersection of nanotechnology and pharmacology has revolutionized the delivery and efficacy of chemotherapeutic agents, notably docetaxel, a key drug in cancer treatment. Traditionally limited by poor solubility and significant side effects, docetaxel's therapeutic potential has been significantly enhanced through its incorporation into nanoplatforms, such as nanofibers and nanoparticles. This advancement offers targeted delivery, controlled release, and improved bioavailability, dramatically reducing systemic toxicity and enhancing patient outcomes. Nanofibers provide a versatile scaffold for the controlled release of docetaxel, utilizing techniques like electrospinning to tailor drug release profiles. Nanoparticles, on the other hand, enable precise drug delivery to tumor cells, minimizing damage to healthy tissues through sophisticated encapsulation methods such as nanoprecipitation and emulsion. These nanotechnologies not only improve the pharmacokinetic properties of docetaxel but also open new avenues in regenerative medicine by facilitating targeted therapy and cellular regeneration. This narrative review highlights the transformative impact of docetaxel-loaded nanoplatforms in oncology and beyond, showcasing the potential of nanotechnology to overcome the limitations of traditional chemotherapy and pave the way for future innovations in drug delivery and regenerative therapies. Through these advancements, nanotechnology promises a new era of precision medicine, enhancing the efficacy of cancer treatments while minimizing adverse effects.


Subject(s)
Docetaxel , Neoplasms , Regenerative Medicine , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Docetaxel/administration & dosage , Neoplasms/drug therapy , Animals , Nanoparticles/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Treatment Outcome , Drug Delivery Systems
2.
Front Med (Lausanne) ; 11: 1328466, 2024.
Article in English | MEDLINE | ID: mdl-38721352

ABSTRACT

Introduction: Wound healing is characterized as a complicated and sophisticated biological process through which tissue heals and repairs itself after injury. However, the normal wound healing process relies on different growth factors as well as the presence of an accurate cytokine level to ensure appropriate cellular responses. In the case of wound healing, the effects of various growth factors have been studied, but the effects of transforming growth factor beta (TGF-ß) on wound healing have been found to be more significant because of its broad spectrum of impacts on healing the wounded tissues or skins. Methods: In the current study, the impact of TGF-ß3 in bone cells' wound healing was examined in vitro. Furthermore, the activities and characteristics of TGF-ß3, as well as those of related growth factors throughout this wound healing process, were studied under hydrodynamic shear stress conditions as well as static conditions of cultured bone cells. Results: We demonstrated that a positive outcome of TGF-ß3 treatment was found after 24 h under a static condition, while TGF-ß3 treatment was found to be effective under a dynamic condition for wound closure. In the case of the dynamic condition, a full wound closure was obtained after 18 h in both the control and TGF-ß3 treatment, while in the case of static conditions, wounds were found to remain open, even after 24 h, for both the control and TGF-ß3 treatment. Additionally, in the static condition, the wound closure rate with TGF-ß3 treatment was found to be quicker than that of the control flask, which implies that wound healing can be postponed in the static condition. In the dynamic condition, the wound healing process became more rapid in a cultured cell environment. Conclusion: The synergistic effect of TGF-ß3 and hydrodynamic shear stress conditions had a positive impact on increasing wound healing and improving the rate of wound closure.

3.
Int J Biol Macromol ; 259(Pt 1): 129233, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184035

ABSTRACT

Small interfering RNAs (siRNAs) can be used as a powerful tool in gene therapy to downregulate the expression of specific disease related genes. Some properties however, such as instability, and low penetration into cells can limit their efficacy, and thus reduce their therapeutic potential. Metal-organic frameworks (MOFs) such as zeolitic imidazolate framework-8 (ZIF-8), which consist of organic bridging ligands and metal cations (Zn), have a very high binding affinity with nucleic acids including siRNAs. In this study, we designed a PEGylated ZIF-8 platform that was equipped with epithelial cell adhesion molecule (EpCAM) aptamer for the targeted delivery of siRNA molecules, in order to knockdown SNHG15 in both a prostate cancer (PC) cell line, and a human PC xenograft mouse model. SNHG15 is a long noncoding RNA, with oncogenic roles in different cancers including PC. The results indicated that the depletion of SNHG15 by Apt-PEG-siRNA@ZIF-8 nanoplatfrom inhibited cell proliferation and colony formation, and increased apoptosis in PC cells. This nanoparticle facilitated the release of siRNAs into the tumor environment in vivo, and subsequently reduced the tumor growth, with no side effects observed in vital organs. We have therefore developed a novel siRNA nano-delivery system for targeted prostate cancer treatment; however further studies are required before it can be tested in clinical trials.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Zeolites , Male , Humans , Animals , Mice , RNA, Small Interfering , Zeolites/pharmacology , Cell Line, Tumor , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Cell Proliferation , Disease Models, Animal , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Biomimetics (Basel) ; 8(2)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37092394

ABSTRACT

The current review aimed to assess the reliability and efficacy of tissue-engineered composite grafts in the reconstruction of large maxillofacial defects resulting from trauma or a benign pathologic disease. A systematic review of the literature was conducted using PubMed/Medline, Embase, and Scopus up to March 2022. The eligibility criteria included patients who had been treated with composite allogeneic tissue engineering for immediate/delayed reconstruction of large maxillofacial defects with minimum/no bone harvesting site. In the initial search, 2614 papers were obtained, and finally, 13 papers were eligible to be included in the current study. Most included papers were case reports or case series. A total of 144 cases were enrolled in this systematic review. The mean age of the patients was 43.34 (age range: 9-89). Most studies reported a successful outcome. Bone tissue engineering for the reconstruction and regeneration of crucial-sized maxillofacial defects is an evolving science still in its infancy. In conclusion, this review paper and the current literature demonstrate the potential for using large-scale transplantable, vascularized, and customizable bone with the aim of reconstructing the large maxillofacial bony defects in short-term follow-ups.

5.
J Funct Biomater ; 13(4)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36547542

ABSTRACT

Endothelialization of artificial scaffolds is considered an effective strategy for increasing the efficiency of vascular transplantation. This study aimed to compare the biophysical/biocompatible properties of three different biodegradable fibrous scaffolds: Poly (ɛ-caprolactone) (PCL) alone, Poly Lactic-co-Glycolic Acid (PLGA) alone (both processed using Spraybase® electrospinning machine), and Coaxial scaffold where the fiber core and sheath was made of PCL and PLGA, respectively. Scaffold structural morphology was assessed by scanning electron microscope and tensile testing was used to investigate the scaffold tension resistance over time. Biocompatibility studies were carried out with human umbilical vein endothelial cells (HUVEC) and human vascular fibroblasts (HVF) for which cell viability (and cell proliferation over a 4-day period) and cell adhesion to the scaffolds were assessed by cytotoxicity assays and confocal microscopy, respectively. Our results showed that all biodegradable polymeric scaffolds are a reliable host to adhere and promote proliferation in HUVEC and HVF cells. In particular, PLGA membranes performed much better adhesion and enhanced cell proliferation compared to control in the absence of polymers. In addition, we demonstrate here that these biodegradable membranes present improved mechanical properties to construct potential tissue-engineered vascular graft.

6.
FEBS J ; 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36282516

ABSTRACT

Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.

7.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771821

ABSTRACT

Electrospinning is an innovative new fibre technology that aims to design and fabricate membranes suitable for a wide range of tissue engineering (TE) applications including vascular grafts, which is the main objective of this research work. This study dealt with fabricating and characterising bilayer structures comprised of an electrospun sheet made of polycaprolactone (PCL, inner layer) and an outer layer made of poly lactic-co-glycolic acid (PLGA) and a coaxial porous scaffold with a micrometre fibre structure was successfully produced. The membranes' propriety for intended biomedical applications was assessed by evaluating their morphological structure/physical properties and structural integrity when they underwent the degradation process. A scanning electron microscope (SEM) was used to assess changes in the electrospun scaffolds' structural morphology such as in their fibre diameter, pore size (µm) and the porosity of the scaffold surface which was measured with Image J software. During the 12-week degradation process at room temperature, most of the scaffolds showed a similar trend in their degradation rate except the 60 min scaffolds. The coaxial scaffold had significantly less mass loss than the bilayer PCL/PLGA scaffold with 1.348% and 18.3%, respectively. The mechanical properties of the fibrous membranes were measured and the coaxial scaffolds showed greater tensile strength and elongation at break (%) compared to the bilayer scaffolds. According to the results obtained in this study, it can be concluded that a scaffold made with a coaxial needle is more suitable for tissue engineering applications due to the improved quality and functionality of the resulting polymeric membrane compared to the basic electrospinning process. However, whilst fabricating a vascular graft is the main aim of this research work, the biological data will not present in this paper.

8.
Biomimetics (Basel) ; 6(4)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34698078

ABSTRACT

Liver tissue engineering is a rapidly developing field which combines the novel use of liver cells, appropriate biochemical factors, and engineering principles, in order to replace or regenerate damaged liver tissue or the organ. The aim of this review paper is to critically investigate different possible methods to tackle issues related with liver diseases/disorders mainly using regenerative medicine. In this work the various regenerative treatment options are discussed, for improving the prognosis of chronic liver disorders. By reviewing existing literature, it is apparent that the current popular treatment option is liver transplantation, although the breakthroughs of stem cell-based therapy and bioartificial liver technology make them a promising alternative.

9.
Materials (Basel) ; 14(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34500862

ABSTRACT

The current study aimed to evaluate the characteristics and the effects of degradation on the structural properties of Poly(lactic-co-glycolic acid) (PLGA)- and polycaprolactone (PCL)-based nanofibrous scaffolds. Six scaffolds were prepared by electrospinning, three with PCL 15% (w/v) and three with PLGA 10% (w/v), with electrospinning processing times of 30, 60 and 90 min. Both types of scaffolds displayed more robust mechanical properties with increased spinning times. The tensile strength of both scaffolds with 90-min electrospun membranes did not show a significant difference in their strengths, as the PCL and PLGA scaffolds measured at 1.492 MPa ± 0.378 SD and 1.764 MPa ± 0.7982 SD, respectively. All membranes were shown to be hydrophobic under a wettability test. A degradation behaviour study was performed by immersing all scaffolds in phosphate-buffered saline (PBS) solution at room temperature for 12 weeks and for 4 weeks at 37 °C. The effects of degradation were monitored by taking each sample out of the PBS solution every week, and the structural changes were investigated under a scanning electron microscope (SEM). The PCL and PLGA scaffolds showed excellent fibre structure with adequate degradation, and the fibre diameter, measured over time, showed slight increase in size. Therefore, as an example of fibre water intake and progressive degradation, the scaffold's percentage weight loss increased each week, further supporting the porous membrane's degradability. The pore size and the porosity percentage of all scaffolds decreased substantially over the degradation period. The conclusion drawn from this experiment is that PCL and PLGA hold great promise for tissue engineering and regenerative medicine applications.

10.
Bioengineering (Basel) ; 8(8)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34436111

ABSTRACT

The cornea comprises a pool of self-regenerating epithelial cells that are crucial to preserving clarity and visibility. Limbal epithelial stem cells (LESCs), which live in a specialized stem cell niche (SCN), are crucial for the survival of the human corneal epithelium. They live at the bottom of the limbal crypts, in a physically enclosed microenvironment with a number of neighboring niche cells. Scientists also simplified features of these diverse microenvironments for more analysis in situ by designing and recreating features of different SCNs. Recent methods for regenerating the corneal epithelium after serious trauma, including burns and allergic assaults, focus mainly on regenerating the LESCs. Mesenchymal stem cells, which can transform into self-renewing and skeletal tissues, hold immense interest for tissue engineering and innovative medicinal exploration. This review summarizes all types of LESCs, identity and location of the human epithelial stem cells (HESCs), reconstruction of LSCN and artificial stem cells for self-renewal.

11.
Biomater Sci ; 8(23): 6469-6504, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33174878

ABSTRACT

Cornea tissue is in high demand by tissue donation centres globally, and thus tissue engineering cornea, which is the main topic of corneal translational medicine, can serve as a limitless alternative to a donated human cornea tissue. Tissue engineering aims to produce solutions to the challenges associated with conventional cornea tissue, including transplantation and use of human amniotic membrane (HAM), which have issues with storage and immune rejection in patients. Accordingly, by carefully selecting biomaterials and fabrication methods to produce these therapeutic tissues, the demand for cornea tissue can be met, with an improved healing outcome for recipients with less associated harmful risks. In this review paper, we aim to present the recent advancements in the research and clinical applications of cornea tissue, applications including biomaterial selection, fabrication methods, scaffold structure, cellular response to these scaffolds, and future advancements of these techniques.


Subject(s)
Cornea , Tissue Engineering , Translational Research, Biomedical , Biocompatible Materials , Humans , Wound Healing
12.
13.
J Exp Clin Cancer Res ; 38(1): 172, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31014355

ABSTRACT

BACKGROUND: Thousands of long noncoding RNAs (lncRNAs) are aberrantly expressed in various types of cancers, however our understanding of their role in the disease is still very limited. METHODS: We applied RNAseq analysis from patient-derived data with validation in independent cohort of patients. We followed these studies with gene regulation analysis as well as experimental dissection of the role of the identified lncRNA by multiple in vitro and in vivo methods. RESULTS: We analyzed RNA-seq data from tumors of 456 CRC patients compared to normal samples, and identified SNHG15 as a potentially oncogenic lncRNA that encodes a snoRNA in one of its introns. The processed SNHG15 is overexpressed in CRC tumors and its expression is highly correlated with poor survival of patients. Interestingly, SNHG15 is more highly expressed in tumors with high levels of MYC expression, while MYC protein binds to two E-box motifs on SNHG15 sequence, indicating that SNHG15 transcription is directly regulated by the oncogene MYC. The depletion of SNHG15 by siRNA or CRISPR-Cas9 inhibits cell proliferation and invasion, decreases colony formation as well as the tumorigenic capacity of CRC cells, whereas its overexpression leads to opposite effects. Gene expression analysis performed upon SNHG15 inhibition showed changes in multiple relevant genes implicated in cancer progression, including MYC, NRAS, BAG3 or ERBB3. Several of these genes are functionally related to AIF, a protein that we found to specifically interact with SNHG15, suggesting that the SNHG15 acts, at least in part, by regulating the activity of AIF. Interestingly, ROS levels, which are directly regulated by AIF, show a significant reduction in SNHG15-depleted cells. Moreover, knockdown of SNHG15 increases the sensitiveness of the cells to 5-FU, while its overexpression renders them more resistant to the chemotherapeutic drug. CONCLUSION: Altogether, these results describe an important role of SNHG15 in promoting colon cancer and mediating drug resistance, suggesting its potential as prognostic marker and target for RNA-based therapies.


Subject(s)
Apoptosis Inducing Factor/genetics , Colorectal Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , Animals , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Female , Fluorouracil/administration & dosage , Gene Expression Regulation, Neoplastic/drug effects , Humans , Kaplan-Meier Estimate , Male , Mice , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , RNA, Small Nucleolar/genetics , Sequence Analysis, RNA , Xenograft Model Antitumor Assays
14.
Cell Reprogram ; 18(5): 333-343, 2016 10.
Article in English | MEDLINE | ID: mdl-27602600

ABSTRACT

Cell Stemness can be achieved by various reprogramming techniques namely, somatic cell nuclear transfer, cell fusion, cell extracts, and introduction of transcription factors from which induced pluripotent stem cells (iPSCs) are obtained. iPSCs are valuable cell sources for drug screening and human disease modeling. Alternatives to virus-based introduction of transcription factors include application of DNA-free methods and introduction of chemically defined culturing conditions. However, the possibility of tumor development is still a hurdle. By taking advantage of NTERA-2 cells, a human embryonal carcinoma cell line, we obtained partially differentiated cells and examined the dedifferentiation capacity of regenerative tissue from rabbit ears. Results indicated that treatment of partially differentiated NTERA-2 cells with the regenerating tissue-conditioned medium (CM) induced expression of key pluripotency markers as examined by real-time polymerase chain reaction, flow cytometry, and immunocytochemistry techniques. In this study, it is reported for the first time that the CM obtained from rabbit regenerating tissue contains dedifferentiation factors, taking cells back to the pluripotency. This system could be a simple and efficient way to reprogram the differentiated cells and generate iPSCs for clinical applications as this system is not accompanied by any viral vector, and reprograms the cells within 10 days of treatment. The results may convince the genomic experts to study the unknown signaling pathways involved in the dedifferentiation by regenerating tissue-CM to authenticate the reprogramming model.


Subject(s)
Cell Dedifferentiation , Cell Differentiation , Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Regeneration/physiology , Animals , Cells, Cultured , Male , Nuclear Transfer Techniques , Rabbits , Transcription Factors/metabolism
15.
Tumour Biol ; 37(1): 7-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26446457

ABSTRACT

Digestive tract malignancies, including oral, pharyngeal, esophageal, gastric, and colorectal cancers, are among the top 10 most common cancers worldwide. In spite of using various treatment modalities, cancer patients still suffer from recurrence and metastasis of malignant cells. Cancer stem cells (CSCs) are undifferentiated and highly proliferative malignant cells with unique properties mediated by overexpression of stemness markers, metastasis-related proteins, drug transporters, and DNA repair machinery. Due to their salient characteristics, it has been suggested that CSCs are responsible for tumor initiation, progression, invasion, recurrence, and therapy resistance. Exploring different aspects of CSC biology has fueled a great enthusiasm in designing novel therapeutic strategies to help patients. For instance, identification of markers associated with digestive tract CSCs, such as CD44, CD133, CD24, EpCAM, LGR5, ALDH1, and BMI1, has made it possible to develop more accurate diagnosis approaches. In addition, specifically targeting CSCs by their markers imposes fewer side effects and improves therapeutic outcomes. Here, we focus on the current status of CSC biology in digestive tract cancers, with emphasis on CSC markers, and review achieved progress in eradication of digestive tract CSC cells.


Subject(s)
Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/pathology , AC133 Antigen/metabolism , Administration, Oral , Aldehyde Dehydrogenase 1 Family , Animals , Biomarkers, Tumor/genetics , CD24 Antigen/metabolism , Carcinoma, Squamous Cell/metabolism , Cell Proliferation , DNA Repair , Epithelial Cell Adhesion Molecule/metabolism , Gene Expression Profiling , Humans , Hyaluronan Receptors/metabolism , Isoenzymes/metabolism , Mice , Neoplasm Metastasis , Neoplasm Recurrence, Local/pathology , Phenotype , Polycomb Repressive Complex 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Retinal Dehydrogenase/metabolism
16.
Cytotechnology ; 68(3): 497-507, 2016 May.
Article in English | MEDLINE | ID: mdl-25371011

ABSTRACT

Stem cells (SCs) are known as undifferentiated cells with self-renewal and differentiation capacities. Regeneration is a phenomenon that occurs in a limited number of animals after injury, during which blastema tissue is formed. It has been hypothesized that upon injury, the dedifferentiation of surrounding tissues leads into the appearance of cells with SC characteristics. In present study, stem-like cells (SLCs) were obtained from regenerating tissue of New Zealand white rabbit's pinna and their stemness properties were examined by their capacity to differentiate toward insulin producing cells (IPCs), as well as neural and osteogenic lineages. Differentiation was induced by culture of SLCs in defined medium, and cell fates were monitored by specific staining, RT-PCR and flow cytometry assays. Our results revealed that dithizone positive cells, which represent IPCs, and islet-like structures appeared 1 week after induction of SLCs, and this observation was confirmed by the elevated expression of Ins, Pax6 and Glut4 at mRNA level. Furthermore, SLCs were able to express neural markers as early as 1 week after retinoic acid treatment. Finally, SLCs were able to differentiate into osteogenic lineage, as confirmed by Alizarin Red S staining and RT-PCR studies. In conclusion, SLCs, which could successfully differentiate into cells derived from all three germ layers, can be considered as a valuable model to study developmental biology and regenerative medicine.

17.
Z Naturforsch C J Biosci ; 69(3-4): 99-109, 2014.
Article in English | MEDLINE | ID: mdl-24873030

ABSTRACT

Chemotherapy is one of the main strategies for reducing the rate of cancer progression or, in some cases, curing the tumour. Since a great number of chemotherapeutic agents are cytotoxic compounds, i. e. similarly affect normal and neoplastic cells, application of antitumour drugs is preferred in cancer management and therapy. In this study, the cytotoxicity of diversin was evaluated in 5637 cells, a transitional cell carcinoma (TCC) subline (bladder carcinoma), and normal human fibroblast cells using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Chromatin condensation and DNA damage induced by diversin were also determined by means of 4',6-diamidino-2-phenylindole (DAPI) staining and the comet assay, respectively. In addition, the mechanism of action of diversin was studied in more detail by the caspase 3 colourimetric assay and flow cytometry-based cell-cycle analyses (PI staining). Our results revealed that diversin has considerable cytotoxic effects in 5637 cells, but not on HFF3 (human foreskin fibroblast) and HDF1 (human dermal fibroblast) cells. Further studies showed that diversin exerts its cytotoxicity via induction of chromatin condensation, DNA damage, and activation of caspase 3 in 5637 cells. In addition, flow cytometric analyses revealed that 5637 cells are mostly arrested at the G2 phase of the cell cycle in the presence of diversin.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Coumarins/chemistry , Monoterpenes/pharmacology , Urinary Bladder Neoplasms/pathology , Caspase 3/metabolism , Cell Line, Tumor , Comet Assay , Coumarins/pharmacology , Drug Screening Assays, Antitumor , Flow Cytometry , Humans , In Vitro Techniques
18.
Nat Prod Res ; 26(18): 1724-7, 2012.
Article in English | MEDLINE | ID: mdl-21988674

ABSTRACT

Despite widespread application of cisplatin in treatment of transitional cell carcinomas, its efficiency is far from satisfactory due to acquired drug resistance. The present study was carried out to estimate the effects of conferone, a sesquiterpene-coumarin isolated from Ferula badrakema, on increasing cisplatin cytotoxicity in 5637 cells. In order to determine conferone effects, 5637 cells were cultured in the presence of different concentrations of conferone and cisplatin in combination. The cytotoxicity and DNA damaging effects were then studied using MTT and comet assays, respectively. The results revealed that 24 h after the combination of 1 µg mL⁻¹ cisplatin with 32 µg mL⁻¹ conferone, the cytotoxicity of cisplatin was increased by 36.76%, and comet assay analyses showed that conferone could enhance the DNA damaging effects of cisplatin by 41%.


Subject(s)
Cisplatin/pharmacology , Coumarins/pharmacology , DNA Damage/drug effects , Cell Line, Tumor , Drug Synergism , Ferula/chemistry , Humans , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...