Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 582(2): 221-8, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-18082144

ABSTRACT

Protein microarray is considered to be one of the key analytical tools for high-throughput protein function analysis. Here, we report that the Arabidopsis HY5 functions as a novel DNA-binding tag (DBtag) for proteins. We also demonstrate that the DBtagged proteins could be immobilized and purified on a newly designed agarose/DNA microplate. Furthermore, we show three applications using the microarray: (1) detection of autophosphorylation activity of DBtagged human protein kinases and inhibition of their activity by staurosporine, (2) specific cleavage of DBtagged proteins by a virus protease and caspase 3, and (3) detection of a protein-protein interaction between the DBtagged UBE2N and UBE2v1. Thus, this method may facilitate rapid functional analysis of a wide range of proteins.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/physiology , DNA-Binding Proteins/physiology , Nuclear Proteins/physiology , Plant Proteins/physiology , Base Sequence , DNA Primers , DNA-Binding Proteins/isolation & purification , Plant Proteins/isolation & purification , Protein Array Analysis , Sepharose
2.
Protein Expr Purif ; 41(1): 27-37, 2005 May.
Article in English | MEDLINE | ID: mdl-15802218

ABSTRACT

In Escherichia coli and other cell-based expression systems, there are critical difficulties in synthesizing membrane proteins, such as the low protein expression levels and the formation of insoluble aggregates. However, structure determinations by X-ray crystallography require the purification of milligram quantities of membrane proteins. In this study, we tried to solve these problems by using cell-free protein expression with an E. coli S30 extract, with G protein coupled receptors (GPCRs) as the target integral membrane proteins. In this system, the thioredoxin-fusion vector induced high protein expression levels as compared with the non-fusion and hexa-histidine-tagged proteins. Two detergents, Brij35 and digitonin, effectively solubilized the produced GPCRs, with little or no effect on the protein yields. The synthesized proteins were detected by Coomassie brilliant blue staining within 1h of reaction initiation, and were easily reconstituted within phospholipid vesicles. Surprisingly, the unpurified, reconstituted thioredoxin-fused receptor proteins had functional activity, in that a specific affinity binding value of an antagonist was obtained for the receptor. This cell-free translation system (about 1mg/ml of reaction volume for 6-8 h) has biophysical and biochemical advantages for the synthesis of integral membrane proteins.


Subject(s)
Receptors, G-Protein-Coupled/biosynthesis , Receptors, G-Protein-Coupled/genetics , Animals , Cell-Free System , DNA/genetics , Detergents , Digitonin , Escherichia coli/genetics , Escherichia coli/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/biosynthesis , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/isolation & purification , GTP-Binding Protein alpha Subunits, Gs/biosynthesis , GTP-Binding Protein alpha Subunits, Gs/genetics , GTP-Binding Protein alpha Subunits, Gs/isolation & purification , Genetic Vectors , Humans , In Vitro Techniques , Kinetics , Membrane Fusion , Polidocanol , Polyethylene Glycols , Protein Biosynthesis , Rats , Receptor, Muscarinic M2/biosynthesis , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/isolation & purification , Receptors, Adrenergic, beta-2/biosynthesis , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/isolation & purification , Receptors, G-Protein-Coupled/isolation & purification , Receptors, Neurotensin/biosynthesis , Receptors, Neurotensin/genetics , Receptors, Neurotensin/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Solubility , Thioredoxins/biosynthesis , Thioredoxins/genetics , Thioredoxins/isolation & purification
3.
Biochem J ; 373(Pt 2): 451-63, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12691603

ABSTRACT

ErbB tyrosine kinase receptors mediate mitogenic signal cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3'-kinase (PI3K)-Akt pathway negatively regulated the extracellular signal-regulated kinase (ERK) cascade by phosphorylating Raf-1 on Ser(259). As the time-course kinetics of Akt and ERK activities seemed to be transient and complex, we constructed a mathematical simulation model for HRG-induced ErbB4 receptor signalling to explain the dynamics of the regulation mechanism in this signal transduction cascade. The model reflected well the experimental results observed in HRG-induced ErbB4 cells and in other modes of growth hormone-induced cell signalling that involve Raf-Akt cross-talk. The model suggested that HRG signalling is regulated by protein phosphatase 2A as well as Raf-Akt cross-talk, and protein phosphatase 2A modulates the kinase activity in both the PI3K-Akt and MAPK (mitogen-activated protein kinase) pathways.


Subject(s)
Computer Simulation , ErbB Receptors/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neuregulin-1/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Cross-Talk/physiology , Animals , CHO Cells , Cricetinae , Enzyme Inhibitors/pharmacology , Kinetics , Ligands , Models, Molecular , Phosphorylation , Proto-Oncogene Proteins c-akt , Receptor, ErbB-4 , Serine/metabolism , Signal Transduction/drug effects , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...