Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Case Rep ; 1: 114, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17963509

ABSTRACT

INTRODUCTION: Cytofluorographic and molecular techniques are effective adjuncts in diagnosing intraocular lymphoma. Primary intraocular lymphoma is an uncommon entity predominantly of B cell origin and rarely with a T cell phenotype. The aim of the present paper is to report a case of a CD8-positive, TCR-alpha/beta-negative intraocular T cell lymphoma and review the literature. CASE PRESENTATION: T cell neoplasia was detected based on flow cytometric demonstration of an abnormal T cell population and polymerase chain reactions for immunoglobulin and T-cell receptor rearrangements demonstrating evidence of monoclonality. Flow cytometry revealed a T cell population aberrantly expressing T-cell lineage markers. This T cell population expressed CD2, bright CD3, CD8, bright CD7, CD38, CD69, and variable CD25. T-cell receptor gamma gene rearrangement studies demonstrated evidence of T-cell gene rearrangement confirming that the T cells were monoclonal. CONCLUSION: We herein report the rare case of a TCR alpha/beta-negative CD8+ intraocular T-cell lymphoma suggestive of gamma/delta origin diagnosed by flow cytometry and polymerase chain reaction.

2.
Brain ; 129(Pt 12): 3249-69, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17071951

ABSTRACT

Spinal cord injury (SCI) provokes an inflammatory response that generates substantial secondary damage within the cord but also may contribute to its repair. Anti-inflammatory treatment of human SCI and its timing must be based on knowledge of the types of cells participating in the inflammatory response, the time after injury when they appear and then decrease in number, and the nature of their actions. Using post-mortem spinal cords, we evaluated the time course and distribution of pathological change, infiltrating neutrophils, monocytes/macrophages and lymphocytes, and microglial activation in injured spinal cords from patients who were 'dead at the scene' or who survived for intervals up to 1 year after SCI. SCI caused zones of pathological change, including areas of inflammation and necrosis in the acute cases, and cystic cavities with longer survival (Zone 1), mantles of less severe change, including axonal swellings, inflammation and Wallerian degeneration (Zone 2) and histologically intact areas (Zone 3). Zone 1 areas increased in size with time after injury whereas the overall injury (size of the Zones 1 and 2 combined) remained relatively constant from the time (1-3 days) when damage was first visible. The distribution of inflammatory cells correlated well with the location of Zone 1, and sometimes of Zone 2. Neutrophils, visualized by their expression of human neutrophil alpha-defensins (defensin), entered the spinal cord by haemorrhage or extravasation, were most numerous 1-3 days after SCI, and were detectable for up to 10 days after SCI. Significant numbers of activated CD68-immunoreactive ramified microglia and a few monocytes/macrophages were in injured tissue within 1-3 days of SCI. Activated microglia, a few monocytes/macrophages and numerous phagocytic macrophages were present for weeks to months after SCI. A few CD8(+) lymphocytes were in the injured cords throughout the sampling intervals. Expression by the inflammatory cells of the oxidative enzymes myeloperoxidase (MPO) and nicotinamide adenine dinucleotide phosphate oxidase (gp91(phox)), and of the pro-inflammatory matrix metalloproteinase (MMP)-9, was analysed to determine their potential to cause oxidative and proteolytic damage. Oxidative activity, inferred from MPO and gp91(phox) immunoreactivity, was primarily associated with neutrophils and activated microglia. Phagocytic macrophages had weak or no expression of MPO or gp91(phox). Only neutrophils expressed MMP-9. These data indicate that potentially destructive neutrophils and activated microglia, replete with oxidative and proteolytic enzymes, appear within the first few days of SCI, suggesting that anti-inflammatory 'neuroprotective' strategies should be directed at preventing early neutrophil influx and modifying microglial activation.


Subject(s)
Spinal Cord Injuries/immunology , Spinal Cord/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Antigens, CD/immunology , Antigens, Differentiation, Myelomonocytic/immunology , Biomarkers/analysis , Child , Female , Humans , Immunohistochemistry/methods , Lymphocytes/immunology , Macrophages/immunology , Male , Matrix Metalloproteinase 9/analysis , Membrane Glycoproteins/analysis , Microglia/immunology , Middle Aged , Monocytes/immunology , NADPH Oxidase 2 , NADPH Oxidases/analysis , Necrosis , Neutrophils/immunology , Oxidation-Reduction , Peroxidase/analysis , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Time Factors
3.
J Trauma ; 61(1): 46-56, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16832248

ABSTRACT

BACKGROUND: Data are limited on the actions of hemoglobin based oxygen carriers (HBOCs) after traumatic brain injury (TBI). This study evaluates neurotoxicity, vasoactivity, cardiac toxicity, and inflammatory activity of HBOC-201 (Biopure, Cambridge, Mass.) resuscitation in a TBI model. METHODS: Swine received TBI and hemorrhage. After 30 minutes, resuscitation was initiated with 10 mL/kg normal saline (NS), followed by either HBOC-201 (6 mL/kg, n = 10) or NS control (n = 10). Supplemental NS was administered to both groups to maintain mean arterial pressure (MAP) >60 mm Hg until 60 minutes, and to maintain cerebral perfusion pressure (CPP) >70 mm Hg from 60 to 300 minutes. The control group received mannitol (1 g/kg) and blood (10 mL/kg) at 90 minutes and half (n = 5) received CPP directed phenylephrine (PE) therapy after 120 minutes. Serum cytokines were measured with ELISA and coagulation was evaluated with thromboelastography. Brains were harvested for neuropathology. RESULTS: With HBOC administration, MAP, CPP, and brain tissue PO2 were restored within 30 minutes and maintained until 300 minutes. Clot strength and fibrin formation were maintained and 9/10 successfully extubated. In contrast, with control, MAP and brain tissue PO2 did not correct until 120 minutes, after mannitol, transfusion and 40% more crystalloid. Furthermore, without PE, CPP did not reach target and 0/5 could be extubated. Lactate, heart rate, cardiac output, mixed venous oxygenation, muscle oxygenation, serum cytokines, and histology did not differ between groups. CONCLUSIONS: After TBI, a single HBOC-201 bolus with minimal supplements provided rapid resuscitation, while maintaining CPP and improving brain oxygenation, without causing cardiac dysfunction, coagulopathy, cytokine release, or brain structural changes.


Subject(s)
Blood Substitutes/toxicity , Brain Injuries/therapy , Fluid Therapy/methods , Hemoglobins/toxicity , Shock, Hemorrhagic/therapy , Analysis of Variance , Animals , Blood Coagulation/drug effects , Blood Substitutes/therapeutic use , Brain/drug effects , Brain/pathology , Cerebrovascular Circulation/drug effects , Cytokines/blood , Drug-Related Side Effects and Adverse Reactions , Female , Hemodynamics/drug effects , Hemoglobins/therapeutic use , Male , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...