Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Ecology ; 104(7): e4105, 2023 07.
Article in English | MEDLINE | ID: mdl-37212446

ABSTRACT

Niche modeling is typically used to assess the effects of anthropogenic land use and climate change on species distributions and to inform spatial conservation planning. These models focus on the suitability of local biotic and abiotic conditions for a species in environmental space (E-space). Although movements also affect species occurrence, efforts to formally integrate geographic space (G-space) into niche modeling have been hindered by the lack of comprehensive theoretical frameworks. We propose the "functional habitat" framework to define areas that are simultaneously of high quality in E-space, and functionally connected to other suitable habitats in G-space. Originating in metapopulation ecology, approaches have been developed to assess the amount of suitable connected habitats, based on the proximity between pairs of locations. Using network theory, which operates in topological space (T-space, defined by a network), we extended these metapopulation approaches to integrate movement constraints in G-space with niche modeling in E-space. We demonstrate the functional habitat framework using empirical data (GPS tracking and population monitoring) throughout the European wild mountain reindeer (Rangifer t. tarandus) distribution range. We show that functional habitat outperforms traditional suitability in explaining the species' distribution. This approach integrates effects from habitat loss and fragmentation for spatial conservation planning, and avoids overemphasizing small, inaccessible areas with locally suitable habitats. The functional habitat framework formally integrates biotic, abiotic, and movement constraints in niche modeling using network theory, thus opening a wide range of applications in spatial conservation planning.


Subject(s)
Ecology , Ecosystem , Climate Change , Movement , Conservation of Natural Resources
2.
Neural Netw ; 90: 90-111, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28458082

ABSTRACT

This work develops a generic framework, called the bag-of-paths (BoP), for link and network data analysis. The central idea is to assign a probability distribution on the set of all paths in a network. More precisely, a Gibbs-Boltzmann distribution is defined over a bag of paths in a network, that is, on a representation that considers all paths independently. We show that, under this distribution, the probability of drawing a path connecting two nodes can easily be computed in closed form by simple matrix inversion. This probability captures a notion of relatedness, or more precisely accessibility, between nodes of the graph: two nodes are considered as highly related when they are connected by many, preferably low-cost, paths. As an application, two families of distances between nodes are derived from the BoP probabilities. Interestingly, the second distance family interpolates between the shortest-path distance and the commute-cost distance. In addition, it extends the Bellman-Ford formula for computing the shortest-path distance in order to integrate sub-optimal paths (exploration) by simply replacing the minimum operator by the soft minimum operator. Experimental results on semi-supervised classification tasks show that both of the new distance families are competitive with other state-of-the-art approaches. In addition to the distance measures studied in this paper, the bag-of-paths framework enables straightforward computation of many other relevant network measures.


Subject(s)
Neural Networks, Computer , Probability , Statistics as Topic/methods , Algorithms
3.
Sci Rep ; 6: 19668, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26838176

ABSTRACT

This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.

4.
J Anim Ecol ; 85(1): 32-42, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25950737

ABSTRACT

The loss, fragmentation and degradation of habitat everywhere on Earth prompts increasing attention to identifying landscape features that support animal movement (corridors) or impedes it (barriers). Most algorithms used to predict corridors assume that animals move through preferred habitat either optimally (e.g. least cost path) or as random walkers (e.g. current models), but neither extreme is realistic. We propose that corridors and barriers are two sides of the same coin and that animals experience landscapes as spatiotemporally dynamic corridor-barrier continua connecting (separating) functional areas where individuals fulfil specific ecological processes. Based on this conceptual framework, we propose a novel methodological approach that uses high-resolution individual-based movement data to predict corridor-barrier continua with increased realism. Our approach consists of two innovations. First, we use step selection functions (SSF) to predict friction maps quantifying corridor-barrier continua for tactical steps between consecutive locations. Secondly, we introduce to movement ecology the randomized shortest path algorithm (RSP) which operates on friction maps to predict the corridor-barrier continuum for strategic movements between functional areas. By modulating the parameter Ѳ, which controls the trade-off between exploration and optimal exploitation of the environment, RSP bridges the gap between algorithms assuming optimal movements (when Ѳ approaches infinity, RSP is equivalent to LCP) or random walk (when Ѳ → 0, RSP → current models). Using this approach, we identify migration corridors for GPS-monitored wild reindeer (Rangifer t. tarandus) in Norway. We demonstrate that reindeer movement is best predicted by an intermediate value of Ѳ, indicative of a movement trade-off between optimization and exploration. Model calibration allows identification of a corridor-barrier continuum that closely fits empirical data and demonstrates that RSP outperforms models that assume either optimality or random walk. The proposed approach models the multiscale cognitive maps by which animals likely navigate real landscapes and generalizes the most common algorithms for identifying corridors. Because suboptimal, but non-random, movement strategies are likely widespread, our approach has the potential to predict more realistic corridor-barrier continua for a wide range of species.


Subject(s)
Animal Distribution , Ecology/methods , Ecosystem , Ethology/methods , Models, Biological , Reindeer/physiology , Animals , Ecology/instrumentation , Ethology/instrumentation , Movement , Norway , Remote Sensing Technology/veterinary
5.
IEEE Trans Pattern Anal Mach Intell ; 36(6): 1268-74, 2014 Jun.
Article in English | MEDLINE | ID: mdl-26353286

ABSTRACT

This work introduces a novel nonparametric density index defined on graphs, the Sum-over-Forests (SoF) density index. It is based on a clear and intuitive idea: high-density regions in a graph are characterized by the fact that they contain a large amount of low-cost trees with high outdegrees while low-density regions contain few ones. Therefore, a Boltzmann probability distribution on the countable set of forests in the graph is defined so that large (high-cost) forests occur with a low probability while short (low-cost) forests occur with a high probability. Then, the SoF density index of a node is defined as the expected outdegree of this node on the set of forests, thus providing a measure of density around that node. Following the matrix-forest theorem and a statistical physics framework, it is shown that the SoF density index can be easily computed in closed form through a simple matrix inversion. Experiments on artificial and real datasets show that the proposed index performs well on finding dense regions, for graphs of various origins.

6.
IEEE Trans Cybern ; 43(1): 385-93, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22893439

ABSTRACT

This paper proposes a simple extension of the celebrated MINIMAX algorithm used in zero-sum two-player games, called Rminimax. The Rminimax algorithm allows controlling the strength of an artificial rival by randomizing its strategy in an optimal way. In particular, the randomized shortest-path framework is applied for biasing the artificial intelligence (AI) adversary toward worse or better solutions, therefore controlling its strength. In other words, our model aims at introducing/implementing bounded rationality to the MINIMAX algorithm. This framework takes into account all possible strategies by computing an optimal tradeoff between exploration (quantified by the entropy spread in the tree) and exploitation (quantified by the expected cost to an end game) of the game tree. As opposed to other tree-exploration techniques, this new algorithm considers complete paths of a tree (strategies) where a given entropy is spread. The optimal randomized strategy is efficiently computed by means of a simple recurrence relation while keeping the same complexity as the original MINIMAX. As a result, the Rminimax implements a nondeterministic strength-adapted AI opponent for board games in a principled way, thus avoiding the assumption of complete rationality. Simulations on two common games show that Rminimax behaves as expected.

7.
Cytometry A ; 81(9): 765-75, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22730412

ABSTRACT

Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry. Faced with large images, pathologists require tools that can help them identify tumor regions that exhibit high proliferating activity, called "hot-spots" (HSs). Pathologists need tools that can quantitatively characterize these HS patterns. To respond to this clinical need, the present study investigates various clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images. This task requires a method capable of identifying an unknown number of clusters, which may be highly variable in terms of shape, size, and density. We developed a hybrid clustering method, referred to as Seedlink. Compared to manual HS selections by three pathologists, we show that Seedlink provides an efficient way of detecting Ki67 HSs and improves the agreement among pathologists when identifying HSs.


Subject(s)
Biomarkers, Tumor/metabolism , Glioma/metabolism , Image Interpretation, Computer-Assisted , Ki-67 Antigen/metabolism , Algorithms , Cluster Analysis , Computer Simulation , Glioma/pathology , Humans , Models, Biological , Software
8.
Neural Netw ; 31: 53-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22497802

ABSTRACT

This paper presents a survey as well as an empirical comparison and evaluation of seven kernels on graphs and two related similarity matrices, that we globally refer to as "kernels on graphs" for simplicity. They are the exponential diffusion kernel, the Laplacian exponential diffusion kernel, the von Neumann diffusion kernel, the regularized Laplacian kernel, the commute-time (or resistance-distance) kernel, the random-walk-with-restart similarity matrix, and finally, a kernel first introduced in this paper (the regularized commute-time kernel) and two kernels defined in some of our previous work and further investigated in this paper (the Markov diffusion kernel and the relative-entropy diffusion matrix). The kernel-on-graphs approach is simple and intuitive. It is illustrated by applying the nine kernels to a collaborative-recommendation task, viewed as a link prediction problem, and to a semisupervised classification task, both on several databases. The methods compute proximity measures between nodes that help study the structure of the graph. Our comparisons suggest that the regularized commute-time and the Markov diffusion kernels perform best on the investigated tasks, closely followed by the regularized Laplacian kernel.


Subject(s)
Databases, Factual/classification , Markov Chains , Statistics as Topic/classification , Random Allocation
9.
IEEE Trans Pattern Anal Mach Intell ; 32(6): 1112-26, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20431135

ABSTRACT

This work introduces a link-based covariance measure between the nodes of a weighted directed graph, where a cost is associated with each arc. To this end, a probability distribution on the (usually infinite) countable set of paths through the graph is defined by minimizing the total expected cost between all pairs of nodes while fixing the total relative entropy spread in the graph. This results in a Boltzmann distribution on the set of paths such that long (high-cost) paths occur with a low probability while short (low-cost) paths occur with a high probability. The sum-over-paths (SoP) covariance measure between nodes is then defined according to this probability distribution: two nodes are considered as highly correlated if they often co-occur together on the same--preferably short--paths. The resulting covariance matrix between nodes (say n nodes in total) is a Gram matrix and therefore defines a valid kernel on the graph. It is obtained by inverting an n\times n matrix depending on the costs assigned to the arcs. In the same spirit, a betweenness score is also defined, measuring the expected number of times a node occurs on a path. The proposed measures could be used for various graph mining tasks such as computing betweenness centrality, semi-supervised classification of nodes, visualization, etc., as shown in Section 7.

10.
Neural Comput ; 21(8): 2363-404, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19323635

ABSTRACT

This letter addresses the problem of designing the transition probabilities of a finite Markov chain (the policy) in order to minimize the expected cost for reaching a destination node from a source node while maintaining a fixed level of entropy spread throughout the network (the exploration). It is motivated by the following scenario. Suppose you have to route agents through a network in some optimal way, for instance, by minimizing the total travel cost-nothing particular up to now-you could use a standard shortest-path algorithm. Suppose, however, that you want to avoid pure deterministic routing policies in order, for instance, to allow some continual exploration of the network, avoid congestion, or avoid complete predictability of your routing strategy. In other words, you want to introduce some randomness or unpredictability in the routing policy (i.e., the routing policy is randomized). This problem, which will be called the randomized shortest-path problem (RSP), is investigated in this work. The global level of randomness of the routing policy is quantified by the expected Shannon entropy spread throughout the network and is provided a priori by the designer. Then, necessary conditions to compute the optimal randomized policy-minimizing the expected routing cost-are derived. Iterating these necessary conditions, reminiscent of Bellman's value iteration equations, allows computing an optimal policy, that is, a set of transition probabilities in each node. Interestingly and surprisingly enough, this first model, while formulated in a totally different framework, is equivalent to Akamatsu's model ( 1996 ), appearing in transportation science, for a special choice of the entropy constraint. We therefore revisit Akamatsu's model by recasting it into a sum-over-paths statistical physics formalism allowing easy derivation of all the quantities of interest in an elegant, unified way. For instance, it is shown that the unique optimal policy can be obtained by solving a simple linear system of equations. This second model is therefore more convincing because of its computational efficiency and soundness. Finally, simulation results obtained on simple, illustrative examples show that the models behave as expected.


Subject(s)
Models, Statistical , Neural Networks, Computer , Computer Simulation , Humans , Probability
11.
Neural Comput ; 14(1): 21-41, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11747533

ABSTRACT

It sometimes happens (for instance in case control studies) that a classifier is trained on a data set that does not reflect the true a priori probabilities of the target classes on real-world data. This may have a negative effect on the classification accuracy obtained on the real-world data set, especially when the classifier's decisions are based on the a posteriori probabilities of class membership. Indeed, in this case, the trained classifier provides estimates of the a posteriori probabilities that are not valid for this real-world data set (they rely on the a priori probabilities of the training set). Applying the classifier as is (without correcting its outputs with respect to these new conditions) on this new data set may thus be suboptimal. In this note, we present a simple iterative procedure for adjusting the outputs of the trained classifier with respect to these new a priori probabilities without having to refit the model, even when these probabilities are not known in advance. As a by-product, estimates of the new a priori probabilities are also obtained. This iterative algorithm is a straightforward instance of the expectation-maximization (EM) algorithm and is shown to maximize the likelihood of the new data. Thereafter, we discuss a statistical test that can be applied to decide if the a priori class probabilities have changed from the training set to the real-world data. The procedure is illustrated on different classification problems involving a multilayer neural network, and comparisons with a standard procedure for a priori probability estimation are provided. Our original method, based on the EM algorithm, is shown to be superior to the standard one for a priori probability estimation. Experimental results also indicate that the classifier with adjusted outputs always performs better than the original one in terms of classification accuracy, when the a priori probability conditions differ from the training set to the real-world data. The gain in classification accuracy can be significant.


Subject(s)
Classification/methods , Probability , Probability Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...