Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
Front Microbiol ; 15: 1376653, 2024.
Article in English | MEDLINE | ID: mdl-38680917

ABSTRACT

The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).

3.
Microb Biotechnol ; 17(4): e14460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635191

ABSTRACT

Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.


Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae , Benzyl Alcohol , Biotechnology , Escherichia coli , Membrane Transport Proteins , Organic Chemicals
4.
Nat Med ; 30(3): 888-895, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38378884

ABSTRACT

Our understanding of cholera transmission and burden largely relies on clinic-based surveillance, which can obscure trends, bias burden estimates and limit the impact of targeted cholera-prevention measures. Serological surveillance provides a complementary approach to monitoring infections, although the link between serologically derived infections and medically attended disease incidence-shaped by immunological, behavioral and clinical factors-remains poorly understood. We unravel this cascade in a cholera-endemic Bangladeshi community by integrating clinic-based surveillance, healthcare-seeking and longitudinal serological data through statistical modeling. Combining the serological trajectories with a reconstructed incidence timeline of symptomatic cholera, we estimated an annual Vibrio cholerae O1 infection incidence rate of 535 per 1,000 population (95% credible interval 514-556), with incidence increasing by age group. Clinic-based surveillance alone underestimated the number of infections and reported cases were not consistently correlated with infection timing. Of the infections, 4 in 3,280 resulted in symptoms, only 1 of which was reported through the surveillance system. These results impart insights into cholera transmission dynamics and burden in the epicenter of the seventh cholera pandemic, where >50% of our study population had an annual V. cholerae O1 infection, and emphasize the potential for a biased view of disease burden and infection risk when depending solely on clinical surveillance data.


Subject(s)
Cholera , Vibrio cholerae , Humans , Cholera/epidemiology , Incidence
5.
ISA Trans ; 142: 148-163, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37625922

ABSTRACT

This paper presents a novel control strategy that provides active disturbance rejection predictive control on constrained systems with no nominal identified model. The proposed loop relaxes the modelling requirement to a fixed discrete-time state-space realisation of a first-order plus integrator plant despite the nature of the controlled process. A third-order discrete Extended State Observer (ESO) estimates the model mismatch and assumed plant states. Moreover, the constraints handling is tackled by incorporating the compensation term related to the total perturbation in the definition of the optimisation problem constraints. The proposal merges in a new way state-space Model Predictive Control (MPC) and Active Disturbance Rejection Control (ADRC) into an architecture suitable for the servo-regulatory operation of linear and non-linear systems, as shown through validation examples.

6.
SSM Popul Health ; 23: 101472, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37560087

ABSTRACT

Background: Children and adolescents are highly vulnerable to the impact of sustained stressors during developmentally sensitive times. We investigated how demographic characteristics intersect with socioeconomic dimensions to shape the social patterning of quality of life and mental health in children and adolescents, two years into the COVID-19 pandemic. Methods: We used data from the prospective SEROCoV-KIDS cohort study of children and adolescents living in Geneva (Switzerland, 2022). We conducted an intersectional Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy by nesting participants within 48 social strata defined by intersecting sex, age, immigrant background, parental education and financial hardship in Bayesian multilevel logistic models for poor health-related quality of life (HRQoL, measured with PedsQL) and mental health difficulties (measured with the Strengths and Difficulties Questionnaire). Results: Among participants aged 2-17 years, 240/2096 (11.5%, 95%CI 10.1-12.9) had poor HRQoL and 105/2135 (4.9%, 95%CI 4.0-5.9) had mental health difficulties. The predicted proportion of poor HRQoL ranged from 3.4% for 6-11 years old Swiss girls with highly educated parents and no financial hardship to 34.6% for 12-17 years old non-Swiss girls with highly educated parents and financial hardship. Intersectional strata involving adolescents and financial hardship showed substantially worse HRQoL than their counterparts. Between-stratum variations in the predicted frequency of mental health difficulties were limited (range 4.4%-6.5%). Conclusions: We found considerable differences in adverse outcomes across social strata. Our results suggest that, post-pandemic, interventions to address social inequities in HRQoL should focus on specific intersectional strata involving adolescents and families experiencing financial hardship, while those aiming to improve mental health should target all children and adolescents.

7.
medRxiv ; 2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37502941

ABSTRACT

Our understanding of cholera transmission and burden largely rely on clinic-based surveillance, which can obscure trends, bias burden estimates and limit the impact of targeted cholera-prevention measures. Serologic surveillance provides a complementary approach to monitoring infections, though the link between serologically-derived infections and medically-attended disease - shaped by immunological, behavioral, and clinical factors - remains poorly understood. We unravel this cascade in a cholera-endemic Bangladeshi community by integrating clinic-based surveillance, healthcare seeking, and longitudinal serological data through statistical modeling. We found >50% of the study population had a V. cholerae O1 infection annually, and infection timing was not consistently correlated with reported cases. Four in 2,340 infections resulted in symptoms, only one of which was reported through the surveillance system. These results provide new insights into cholera transmission dynamics and burden in the epicenter of the 7th cholera pandemic and provide a framework to synthesize serological and clinical surveillance data.

8.
Nat Commun ; 14(1): 3032, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37230973

ABSTRACT

Binding antibody levels against SARS-CoV-2 have shown to be correlates of protection against infection with pre-Omicron lineages. This has been challenged by the emergence of immune-evasive variants, notably the Omicron sublineages, in an evolving immune landscape with high levels of cumulative incidence and vaccination coverage. This in turn limits the use of widely available commercial high-throughput methods to quantify binding antibodies as a tool to monitor protection at the population-level. Here we show that anti-Spike RBD antibody levels, as quantified by the immunoassay used in this study, are an indirect correlate of protection against Omicron BA.1/BA.2 for individuals previously infected by SARS-CoV-2. Leveraging repeated serological measurements between April 2020 and December 2021 on 1083 participants of a population-based cohort in Geneva, Switzerland, and using antibody kinetic modeling, we found up to a three-fold reduction in the hazard of having a documented positive SARS-CoV-2 infection during the Omicron BA.1/BA.2 wave for anti-S antibody levels above 800 IU/mL (HR 0.30, 95% CI 0.22-0.41). However, we did not detect a reduction in hazard among uninfected participants. These results provide reassuring insights into the continued interpretation of SARS-CoV-2 binding antibody measurements as an independent marker of protection at both the individual and population levels.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Immune Evasion , Kinetics , Antibodies, Neutralizing
9.
Rev Med Suisse ; 19(825): 845-848, 2023 May 03.
Article in French | MEDLINE | ID: mdl-37139878

ABSTRACT

Cholera is an acute diarrheal disease caused by the bacteria Vibrio cholerae. Each year, 100'000 people die from cholera. The links between cholera, weather and climate are visible in the seasonality of cholera globally, but evidence to date illustrates that the relationships between them are highly heterogeneous across settings, with differences in both the direction and strength of the associations. Before we can devise evidence-based scenarios on how climate change may influence cholera burden in the future, more detailed case studies, using more robust climate and epidemiological data from across the globe, are needed. In the meantime, provision of sustainable water and sanitation is of the highest priority to offset potential impacts of climate change on cholera.


Le choléra est une maladie diarrhéique aiguë causée par la bactérie Vibrio cholerae. Chaque année, 100 000 personnes meurent du choléra. Les liens entre choléra, météorologie et climat sont évidents dans la saisonnalité de la maladie, mais les données disponibles à ce jour montrent que ces relations sont très hétérogènes selon les endroits, avec des différences dans la direction et l'ampleur des associations. Avant de pouvoir élaborer des scénarios basés sur des preuves décrivant la manière dont le changement climatique pourrait influencer le fardeau du choléra à l'avenir, il est nécessaire de réaliser des études de cas plus détaillées à travers le monde. Dans l'intervalle, fournir l'accès à l'eau et à un assainissement durable est une priorité absolue pour limiter les effets potentiels du changement climatique sur le choléra.


Subject(s)
Cholera , Vibrio cholerae , Humans , Cholera/epidemiology , Cholera/microbiology , Climate Change , Water
10.
ChemistryOpen ; 12(4): e202200266, 2023 04.
Article in English | MEDLINE | ID: mdl-36929157

ABSTRACT

The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.


Subject(s)
Biological Products , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Tryptophan/metabolism , Tryptamines/metabolism
11.
Lancet Reg Health Eur ; 24: 100547, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36474728

ABSTRACT

Background: More than two years into the COVID-19 pandemic, most of the population has developed anti-SARS-CoV-2 antibodies from infection and/or vaccination. However, public health decision-making is hindered by the lack of up-to-date and precise characterization of the immune landscape in the population. Here, we estimated anti-SARS-CoV-2 antibodies seroprevalence and cross-variant neutralization capacity after Omicron became dominant in Geneva, Switzerland. Methods: We conducted a population-based serosurvey between April 29 and June 9, 2022, recruiting children and adults of all ages from age-stratified random samples of the general population of Geneva, Switzerland. We tested for anti-SARS-CoV-2 antibodies using commercial immunoassays targeting either the spike (S) or nucleocapsid (N) protein, and for antibody neutralization capacity against different SARS-CoV-2 variants using a cell-free Spike trimer-ACE2 binding-based surrogate neutralization assay. We estimated seroprevalence and neutralization capacity using a Bayesian modeling framework accounting for the demographics, vaccination, and infection statuses of the Geneva population. Findings: Among the 2521 individuals included in the analysis, the estimated total antibodies seroprevalence was 93.8% (95% CrI 93.1-94.5), including 72.4% (70.0-74.7) for infection-induced antibodies. Estimates of neutralizing antibodies in a representative subsample (N = 1160) ranged from 79.5% (77.1-81.8) against the Alpha variant to 46.7% (43.0-50.4) against the Omicron BA.4/BA.5 subvariants. Despite having high seroprevalence of infection-induced antibodies (76.7% [69.7-83.0] for ages 0-5 years, 90.5% [86.5-94.1] for ages 6-11 years), children aged <12 years had substantially lower neutralizing activity than older participants, particularly against Omicron subvariants. Overall, vaccination was associated with higher neutralizing activity against pre-Omicron variants. Vaccine booster alongside recent infection was associated with higher neutralizing activity against Omicron subvariants. Interpretation: While most of the Geneva population has developed anti-SARS-CoV-2 antibodies through vaccination and/or infection, less than half has neutralizing activity against the currently circulating Omicron BA.5 subvariant. Hybrid immunity obtained through booster vaccination and infection confers the greatest neutralization capacity, including against Omicron. Funding: General Directorate of Health in Geneva canton, Private Foundation of the Geneva University Hospitals, European Commission ("CoVICIS" grant), and a private foundation advised by CARIGEST SA.

12.
PLoS Negl Trop Dis ; 16(10): e0010894, 2022 10.
Article in English | MEDLINE | ID: mdl-36315503

ABSTRACT

CRISPR gene drives could revolutionize the control of infectious diseases by accelerating the spread of engineered traits that limit parasite transmission in wild populations. Gene drive technology in mollusks has received little attention despite the role of freshwater snails as hosts of parasitic flukes causing 200 million annual cases of schistosomiasis. A successful drive in snails must overcome self-fertilization, a common feature of host snails which could prevents a drive's spread. Here we developed a novel population genetic model accounting for snails' mixed mating and population dynamics, susceptibility to parasite infection regulated by multiple alleles, fitness differences between genotypes, and a range of drive characteristics. We integrated this model with an epidemiological model of schistosomiasis transmission to show that a snail population modification drive targeting immunity to infection can be hindered by a variety of biological and ecological factors; yet under a range of conditions, disease reduction achieved by chemotherapy treatment of the human population can be maintained with a drive. Alone a drive modifying snail immunity could achieve significant disease reduction in humans several years after release. These results indicate that gene drives, in coordination with existing public health measures, may become a useful tool to reduce schistosomiasis burden in selected transmission settings with effective CRISPR construct design and evaluation of the genetic and ecological landscape.


Subject(s)
Gene Drive Technology , Schistosomiasis , Animals , Humans , Clustered Regularly Interspaced Short Palindromic Repeats , Schistosomiasis/epidemiology , Snails/genetics , Snails/parasitology , Fresh Water , China/epidemiology
13.
PLoS One ; 17(8): e0272663, 2022.
Article in English | MEDLINE | ID: mdl-35976947

ABSTRACT

OBJECTIVES: To report a prospective epidemiological, virological and serological investigation of a SARS-CoV-2 outbreak in a primary school. METHODS: As part of a longitudinal, prospective, school-based surveillance study, this investigation involved repeated testing of 73 pupils, 9 teachers, 13 non-teaching staff and 26 household members of participants who tested positive, with rapid antigen tests and/or RT-PCR (Day 0-2 and Day 5-7), serologies on dried capillary blood samples (Day 0-2 and Day 30), contact tracing interviews and SARS-CoV-2 whole genome sequencing. RESULTS: We identified 20 children (aged 4 to 6 years from 4 school classes), 2 teachers and a total of 4 household members who were infected by the Alpha variant during this outbreak. Infection attack rates were between 11.8 and 62.0% among pupils from the 4 school classes, 22.2% among teachers and 0% among non-teaching staff. Secondary attack rate among household members was 15.4%. Symptoms were reported by 63% of infected children, 100% of teachers and 50% of household members. All analysed sequences but one showed 100% identity. Serological tests detected 8 seroconversions unidentified by SARS-CoV-2 virological tests. CONCLUSIONS: This study confirmed child-to-child and child-to-adult SARS-CoV-2 transmission and introduction into households. Effective measures to limit transmission in schools have the potential to reduce the overall community circulation.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Child , Disease Outbreaks , Humans , Longitudinal Studies , Prospective Studies , SARS-CoV-2/genetics , Schools
14.
J Biotechnol ; 353: 9-18, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35659892

ABSTRACT

Acetogenic bacteria produce acetate following the fixation of CO2 via the Wood-Ljungdahl pathway. As such, they represent excellent process organisms for the production of novel chemicals and fuels from this waste greenhouse gas. Acetobacterium woodii is the model acetogen and numerous studies have been conducted investigating its biochemistry, gas consumption and use as a production chassis. However, there are a dearth of available tools for A. woodii gene modification which limits the research options available for genetic studies. Here, the previously proposed Clostridia Roadmap is implemented in A. woodii leading to the derivation of a knockout system for the generation of clean, in-frame deletions. The replicon of the Gram-positive plasmid pCD6 that originated in Clostridioides difficile was identified as being replication-defective in A. woodii, a property that was exploited to construct a pseudo-suicide knockout plasmid which was used to generate an auxotrophic, pyrE mutant. This allowed the subsequent use of a heterologous pyrE gene (from Clostridium acetobutylicum) as a counter selection marker and the deletion of a number of genes by allelic exchange. Specific mutants generated were affected in growth on glucose, fructose and ethanol as a consequence of deletion of fruA, pstG and adhE, respectively.


Subject(s)
Acetobacterium , Clostridium acetobutylicum , Acetates/metabolism , Acetobacterium/genetics , Acetobacterium/metabolism , Carbon Dioxide/metabolism , Clostridium acetobutylicum/metabolism , Gene Deletion , Humans
15.
Elife ; 112022 06 21.
Article in English | MEDLINE | ID: mdl-35726851

ABSTRACT

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , United States/epidemiology , Vaccination
16.
Lancet Glob Health ; 10(6): e831-e839, 2022 06.
Article in English | MEDLINE | ID: mdl-35461521

ABSTRACT

BACKGROUND: Cholera remains a major threat in sub-Saharan Africa (SSA), where some of the highest case-fatality rates are reported. Knowing in what months and where cholera tends to occur across the continent could aid in improving efforts to eliminate cholera as a public health concern. However, largely due to the absence of unified large-scale datasets, no continent-wide estimates exist. In this study, we aimed to estimate cholera seasonality across SSA and explore the correlation between hydroclimatic variables and cholera seasonality. METHODS: Using the global cholera database of the Global Task Force on Cholera Control, we developed statistical models to synthesise data across spatial and temporal scales to infer the seasonality of excess (defined as incidence higher than the 2010-16 mean incidence rate) suspected cholera occurrence in SSA. We developed a Bayesian statistical model to infer the monthly risk of excess cholera at the first and second administrative levels. Seasonality patterns were then grouped into spatial clusters. Finally, we studied the association between seasonality estimates and hydroclimatic variables (mean monthly fraction of area flooded, mean monthly air temperature, and cumulative monthly precipitation). FINDINGS: 24 (71%) of the 34 countries studied had seasonal patterns of excess cholera risk, corresponding to approximately 86% of the SSA population. 12 (50%) of these 24 countries also had subnational differences in seasonality patterns, with strong differences in seasonality strength between regions. Seasonality patterns clustered into two macroregions (west Africa and the Sahel vs eastern and southern Africa), which were composed of subregional clusters with varying degrees of seasonality. Exploratory association analysis found most consistent and positive correlations between cholera seasonality and precipitation and, to a lesser extent, between cholera seasonality and temperature and flooding. INTERPRETATION: Widespread cholera seasonality in SSA offers opportunities for intervention planning. Further studies are needed to study the association between cholera and climate. FUNDING: US National Aeronautics and Space Administration Applied Sciences Program and the Bill & Melinda Gates Foundation.


Subject(s)
Cholera , Africa South of the Sahara/epidemiology , Bayes Theorem , Cholera/epidemiology , Humans , Incidence , Models, Statistical
17.
PLOS Glob Public Health ; 2(5): e0000237, 2022.
Article in English | MEDLINE | ID: mdl-36962205

ABSTRACT

Non-pharmaceutical interventions have been widely employed to control the COVID-19 pandemic. Their associated effect on SARS-CoV-2 transmission have however been unequally studied across regions. Few studies have focused on the Gulf states despite their potential role for global pandemic spread, in particular in the Kingdom of Saudi Arabia through religious pilgrimages. We study the association between NPIs and SARS-CoV-2 transmission in the Kingdom of Saudi Arabia during the first pandemic wave between March and October 2020. We infer associations between NPIs introduction and lifting through a spatial SEIR-type model that allows for inferences of region-specific changes in transmission intensity. We find that reductions in transmission were associated with NPIs implemented shortly after the first reported case including Isolate and Test with School Closure (region-level mean estimates of the reduction in R0 ranged from 25-41%), Curfew (20-70% reduction), and Lockdown (50-60% reduction), although uncertainty in the estimates was high, particularly for the Isolate and Test with School Closure NPI (95% Credible Intervals from 1% to 73% across regions). Transmission was found to increase progressively in most regions during the last part of NPI relaxation phases. These results can help informing the policy makers in the planning of NPI scenarios as the pandemic evolves with the emergence of SARS-CoV-2 variants and the availability of vaccination.

18.
Scand J Public Health ; 50(1): 124-135, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34664529

ABSTRACT

Aims: To assess SARS-CoV-2 seroprevalence over the first epidemic wave in the canton of Geneva, Switzerland, as well as risk factors for infection and symptoms associated with IgG seropositivity. Methods: Between April and June 2020, former participants of a representative survey of the 20-74-year-old population of canton Geneva were invited to participate in the study, along with household members aged over 5 years. Blood samples were tested for anti-SARS-CoV-2 immunoglobulin G. Questionnaires were self-administered. We estimated seroprevalence with a Bayesian model accounting for test performance and sampling design. Results: We included 8344 participants, with an overall adjusted seroprevalence of 7.8% (95% credible interval 6.8-8.9). Seroprevalence was highest among 18-49 year-olds (9.5%), and lowest in 5-9-year-old children (4.3%) and individuals >65 years (4.7-5.4%). Odds of seropositivity were significantly reduced for female retirees and unemployed men compared to employed individuals, and smokers compared to non-smokers. We found no significant association between occupation, level of education, neighborhood income and the risk of being seropositive. The symptom most strongly associated with seropositivity was anosmia/dysgeusia. Conclusions: Anti-SARS-CoV-2 population seroprevalence remained low after the first wave in Geneva. Socioeconomic factors were not associated with seropositivity in this sample. The elderly, young children and smokers were less frequently seropositive, although it is not clear how biology and behaviours shape these differences.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Bayes Theorem , Child , Child, Preschool , Female , Humans , Immunoglobulin G , Male , Middle Aged , Risk Factors , Seroepidemiologic Studies , Switzerland/epidemiology , Young Adult
19.
Infect Dis Poverty ; 10(1): 134, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34895355

ABSTRACT

BACKGROUND: The economic impact of schistosomiasis and the underlying tradeoffs between water resources development and public health concerns have yet to be quantified. Schistosomiasis exerts large health, social and financial burdens on infected individuals and households. While irrigation schemes are one of the most important policy responses designed to reduce poverty, particularly in sub-Saharan Africa, they facilitate the propagation of schistosomiasis and other diseases. METHODS: We estimate the economic impact of schistosomiasis in Burkina Faso via its effect on agricultural production. We create an original dataset that combines detailed household and agricultural surveys with high-resolution geo-statistical disease maps. We develop new methods that use the densities of the intermediate host snails of schistosomiasis as instrumental variables together with panel, spatial and machine learning techniques. RESULTS: We estimate that the elimination of schistosomiasis in Burkina Faso would increase average crop yields by around 7%, rising to 32% for high infection clusters. Keeping schistosomiasis unchecked, in turn, would correspond to a loss of gross domestic product of approximately 0.8%. We identify the disease burden as a shock to the agricultural productivity of farmers. The poorest households engaged in subsistence agriculture bear a far heavier disease burden than their wealthier counterparts, experiencing an average yield loss due to schistosomiasis of between 32 and 45%. We show that the returns to water resources development are substantially reduced once its health effects are taken into account: villages in proximity of large-scale dams suffer an average yield loss of around 20%, and this burden decreases as distance between dams and villages increases. CONCLUSIONS: This study provides a rigorous estimation of how schistosomiasis affects agricultural production and how it is both a driver and a consequence of poverty. It further quantifies the tradeoff between the economics of water infrastructures and their impact on public health. Although we focus on Burkina Faso, our approach can be applied to any country in which schistosomiasis is endemic.


Subject(s)
Schistosomiasis , Agriculture , Animals , Burkina Faso/epidemiology , Humans , Public Health , Schistosomiasis/epidemiology , Snails
20.
Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: mdl-34713799

ABSTRACT

BackgroundUp-to-date seroprevalence estimates are critical to describe the SARS-CoV-2 immune landscape and to guide public health decisions.AimWe estimate seroprevalence of anti-SARS-CoV-2 antibodies 15 months into the COVID-19 pandemic and 6 months into the vaccination campaign.MethodsWe conducted a population-based cross-sectional serosurvey between 1 June and 7 July 2021, recruiting participants from age- and sex-stratified random samples of the general population. We tested participants for anti-SARS-CoV-2 antibodies targeting the spike (S) or nucleocapsid (N) proteins using the Roche Elecsys immunoassays. We estimated the anti-SARS-CoV-2 antibodies seroprevalence following vaccination and/or infection (anti-S antibodies), or infection only (anti-N antibodies).ResultsAmong 3,355 individuals (54.1% women; 20.8% aged < 18 years and 13.4% aged ≥ 65 years), 2,161 (64.4%) had anti-S antibodies and 906 (27.0%) had anti-N antibodies. The total seroprevalence was 66.1% (95% credible interval (CrI): 64.1-68.0). We estimated that 29.9% (95% Crl: 28.0-31.9) of the population developed antibodies after infection; the rest having developed antibodies via vaccination. Seroprevalence estimates differed markedly across age groups, being lowest among children aged 0-5 years (20.8%; 95% Crl: 15.5-26.7) and highest among older adults aged ≥ 75 years (93.1%; 95% Crl: 89.6-96.0). Seroprevalence of antibodies developed via infection and/or vaccination was higher among participants with higher educational level.ConclusionMost of the population has developed anti-SARS-CoV-2 antibodies, despite most teenagers and children remaining vulnerable to infection. As the SARS-CoV-2 Delta variant spreads and vaccination rates stagnate, efforts are needed to address vaccine hesitancy, particularly among younger individuals and to minimise spread among children.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Aged , Antibodies, Viral , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Immunization Programs , Infant , Infant, Newborn , Male , Pandemics , Seroepidemiologic Studies , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...