Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 147(8)2020 04 20.
Article in English | MEDLINE | ID: mdl-32265198

ABSTRACT

Endocannabinoids (eCB) modulate growth cone dynamics and axonal pathfinding through the stimulation of cannabinoid type-1 receptors (CB1R), the function of which depends on their delivery and precise presentation at the growth cone surface. However, the mechanism involved in the axonal transport of CB1R and its transport role in eCB signaling remains elusive. As mutations in the kinesin-1 molecular motor have been identified in patients with abnormal cortical development and impaired white matter integrity, we studied the defects in axonal pathfinding and fasciculation in mice lacking the kinesin light chain 1 (Klc1-/-) subunit of kinesin-1. Reduced levels of CB1R were found in corticofugal projections and axonal growth cones in Klc1-/- mice. By live-cell imaging of CB1R-eGFP we characterized the axonal transport of CB1R vesicles and described the defects in transport that arise after KLC1 deletion. Cofilin activation, which is necessary for actin dynamics during growth cone remodeling, is impaired in the Klc1-/- cerebral cortex. In addition, Klc1-/- neurons showed expanded growth cones that were unresponsive to CB1R-induced axonal elongation. Together, our data reveal the relevance of kinesin-1 in CB1R axonal transport and in eCB signaling during brain wiring.


Subject(s)
Axonal Transport , Axons/metabolism , Cannabinoids/metabolism , Kinesins/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Axons/ultrastructure , Cerebral Cortex/metabolism , Gene Deletion , Growth Cones/metabolism , Mice, Inbred C57BL , Protein Subunits/metabolism , Thalamus/metabolism
2.
J Neurochem ; 149(3): 362-380, 2019 05.
Article in English | MEDLINE | ID: mdl-30664247

ABSTRACT

The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Kinesins/metabolism , Locomotion/physiology , Receptors, Dopamine D2/metabolism , Animals , Mice , Mice, Knockout
3.
J Neurochem ; 129(4): 637-48, 2014 May.
Article in English | MEDLINE | ID: mdl-24329778

ABSTRACT

The endocannabinoid system, composed of cannabinoid receptors, endocannabinoids, and synthesis and degradation enzymes, is present since early stages of brain development. During this period, the endocannabinoid system is involved in the regulation of neural progenitor proliferation and specification as well as the migration and differentiation of pyramidal neurons and interneurons. Marijuana consumption during pregnancy represents a serious risk in relation to the fetal brain development since Δ(9) -tetrahidrocannabinol, the main active compound of cannabis, can reach the fetus through placenta and hemato-encephalic barrier. Cohort studies performed on children and adolescents of mothers who consumed marijuana during pregnancy reported cognitive and comportamental abnormalities. In the present study, we examined the expression of the cannabinoid receptor CB1 R during corticogenesis in radially and tangentially migrating post-mitotic neurons. We found that prenatal exposure to WIN impaired tangential and radial migration of post-mitotic neurons in the dorsal pallium. In addition, we described alterations of two transcription factors associated with proliferating and newly post-mitotic glutamatergic cells in the dorsal pallium, Tbr1 and Tbr2, and disruption in the number of Cajal-Retzius cells. The present results contribute to the knowledge of neurobiological substrates that determine neuro-comportamental changes that will persist through post-natal life.


Subject(s)
Benzoxazines/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Cerebral Cortex/cytology , Endocannabinoids/physiology , Morpholines/pharmacology , Naphthalenes/pharmacology , Neurons/drug effects , Receptor, Cannabinoid, CB1/physiology , Animals , Apoptosis/drug effects , Cell Adhesion Molecules, Neuronal/analysis , Cell Division/drug effects , Cell Movement/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/embryology , Doublecortin Domain Proteins , Extracellular Matrix Proteins/analysis , Female , GABAergic Neurons/cytology , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Glutamic Acid/physiology , Hippocampus/cytology , Hippocampus/drug effects , Hippocampus/embryology , Interneurons/cytology , Interneurons/drug effects , Interneurons/physiology , Microtubule-Associated Proteins/analysis , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurons/cytology , Neurons/physiology , Neuropeptides/analysis , Pregnancy , Rats , Rats, Wistar , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/biosynthesis , Reelin Protein , Serine Endopeptidases/analysis , T-Box Domain Proteins/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...