Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Acta Neuropathol ; 140(3): 341-358, 2020 09.
Article in English | MEDLINE | ID: mdl-32601912

ABSTRACT

Polygenic inheritance plays a central role in Parkinson disease (PD). A priority in elucidating PD etiology lies in defining the biological basis of genetic risk. Unraveling how risk leads to disruption will yield disease-modifying therapeutic targets that may be effective. Here, we utilized a high-throughput and hypothesis-free approach to determine biological processes underlying PD using the largest currently available cohorts of genetic and gene expression data from International Parkinson's Disease Genetics Consortium (IPDGC) and the Accelerating Medicines Partnership-Parkinson's disease initiative (AMP-PD), among other sources. We applied large-scale gene-set specific polygenic risk score (PRS) analyses to assess the role of common variation on PD risk focusing on publicly annotated gene sets representative of curated pathways. We nominated specific molecular sub-processes underlying protein misfolding and aggregation, post-translational protein modification, immune response, membrane and intracellular trafficking, lipid and vitamin metabolism, synaptic transmission, endosomal-lysosomal dysfunction, chromatin remodeling and apoptosis mediated by caspases among the main contributors to PD etiology. We assessed the impact of rare variation on PD risk in an independent cohort of whole-genome sequencing data and found evidence for a burden of rare damaging alleles in a range of processes, including neuronal transmission-related pathways and immune response. We explored enrichment linked to expression cell specificity patterns using single-cell gene expression data and demonstrated a significant risk pattern for dopaminergic neurons, serotonergic neurons, hypothalamic GABAergic neurons, and neural progenitors. Subsequently, we created a novel way of building de novo pathways by constructing a network expression community map using transcriptomic data derived from the blood of PD patients, which revealed functional enrichment in inflammatory signaling pathways, cell death machinery related processes, and dysregulation of mitochondrial homeostasis. Our analyses highlight several specific promising pathways and genes for functional prioritization and provide a cellular context in which such work should be done.


Subject(s)
Genetic Predisposition to Disease/genetics , Lysosomes/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Community Networks , Dopaminergic Neurons/metabolism , Gene Expression Profiling/methods , Humans , Multifactorial Inheritance/physiology
3.
Cell Tissue Res ; 373(1): 9-20, 2018 07.
Article in English | MEDLINE | ID: mdl-29536161

ABSTRACT

Over the last two decades, we have witnessed a revolution in the field of Parkinson's disease (PD) genetics. Great advances have been made in identifying many loci that confer a risk for PD, which has subsequently led to an improved understanding of the molecular pathways involved in disease pathogenesis. Despite this success, it is predicted that only a relatively small proportion of the phenotypic variability has been explained by genetics. Therefore, it is clear that common heritable components of disease are still to be identified. Dissecting the genetic architecture of PD constitutes a critical effort in identifying therapeutic targets and although such substantial progress has helped us to better understand disease mechanism, the route to PD disease-modifying drugs is a lengthy one. In this review, we give an overview of the known genetic risk factors in PD, focusing not on individual variants but the larger networks that have been implicated following comprehensive pathway analysis. We outline the challenges faced in the translation of risk loci to pathobiological relevance and illustrate the need for integrating big-data by noting success in recent work which adopts a broad-scale screening approach. Lastly, with PD genetics now progressing from identifying risk to predicting disease, we review how these models will likely have a significant impact in the future.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Gene Regulatory Networks , Genetic Association Studies , Genetic Heterogeneity , Humans , Risk Factors
4.
Cell Death Dis ; 5: e1368, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25118928

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson's disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases.


Subject(s)
Aminopyridines/toxicity , Autophagy/drug effects , Benzamides/toxicity , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Aldehydes/metabolism , Benzodiazepinones/pharmacology , Cell Line, Tumor , Dynamins , GTP Phosphohydrolases/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , Organophosphorus Compounds/pharmacology , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
5.
Cell Death Dis ; 5: e1328, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25032851

ABSTRACT

Retinal pigment epithelium has a crucial role in the physiology and pathophysiology of the retina due to its location and metabolism. Oxidative damage has been demonstrated as a pathogenic mechanism in several retinal diseases, and reactive oxygen species are certainly important by-products of ethanol (EtOH) metabolism. Autophagy has been shown to exert a protective effect in different cellular and animal models. Thus, in our model, EtOH treatment increases autophagy flux, in a concentration-dependent manner. Mitochondrial morphology seems to be clearly altered under EtOH exposure, leading to an apparent increase in mitochondrial fission. An increase in 2',7'-dichlorofluorescein fluorescence and accumulation of lipid peroxidation products, such as 4-hydroxy-nonenal (4-HNE), among others were confirmed. The characterization of these structures confirmed their nature as aggresomes. Hence, autophagy seems to have a cytoprotective role in ARPE-19 cells under EtOH damage, by degrading fragmented mitochondria and 4-HNE aggresomes. Herein, we describe the central implication of autophagy in human retinal pigment epithelial cells upon oxidative stress induced by EtOH, with possible implications for other conditions and diseases.


Subject(s)
Aldehydes/adverse effects , Autophagy/drug effects , Epithelial Cells/drug effects , Ethanol/adverse effects , Mitochondria/metabolism , Retinal Diseases/physiopathology , Retinal Pigment Epithelium/cytology , Apoptosis/drug effects , Cell Line , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Mitochondria/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Retinal Diseases/etiology , Retinal Diseases/metabolism , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...