Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt B: 719-25, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25448971

ABSTRACT

In this study, 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) and its novel N(4) substituted derivatives were synthesized and characterized by different techniques. The optical band gap of the compounds and the energy of HOMO were experimentally examined by UV-vis spectra and cyclic voltammetry measurements, respectively. Furthermore, the conformational spaces of the compounds were scanned with molecular mechanics method. The geometry optimization, HOMO and LUMO energies, the energy gap of the HOMO-LUMO, dipole moment of the compounds were theoretically calculated by the density functional theory B3LYP/6-311++G(d,p) level. The minimal electronic excitation energy and maximum wavelength calculations of the compounds were also performed by TD-DFT//B3LYP/6-311++G(d,p) level of theory. Theoretically calculated values were compared with the related experimental values. The combined results exhibit that all compounds have good electron-donor properties which affect anti-proliferative activity. The cytotoxic effects of the compounds were also evaluated against HeLa (cervical carcinoma), MCF-7 (breast carcinoma) and PC-3 (prostatic carcinoma) cell lines using the standard MTT assay. All tested compounds showed antiproliferative effect having IC50 values in different range. In comparison with that of HMAT, it was obtained that while ethyl group on 4(N)-substituted position decreased in potent anti-proliferative effect, the phenyl group on the position increased in anti-proliferative effect for the tested cancer cell line. Considering the molecular energy parameters, the cytotoxicity activities of the compounds were discussed.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Electrochemical Techniques , Electrons , Humans , Models, Molecular , Neoplasms/drug therapy , Spectrophotometry, Ultraviolet , Thiosemicarbazones/chemical synthesis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 128: 575-82, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24691372

ABSTRACT

2,3-Indoledione 3-thiosemicarbazone (TSCI) and a novel compound 3-(2-(4-(4-phenoxyphenyl)thiazol-2-yl)hydrazono)indolin-2-one (FTHI) were synthesized with high yield and characterized by spectroscopic techniques. The complexation behaviors of TSCI and FTHI for various anionic species (F(-), Cl(-), Br(-), I(-), NO2(-), NO3(-), BzO(-), HSO4(-), ClO4(-)) in CH3CN were investigated and compared by UV-vis spectroscopy, cyclic voltammetry and (1)H NMR titration techniques. FTHI showed high degree of selectivity for fluoride over other anions. This selectivity could be easily observed by the naked eye, indicating that FTHI is potential colorimetric sensor for fluoride anion.


Subject(s)
Fluorides/analysis , Thiosemicarbazones/chemistry , Electrochemical Techniques/methods , Magnetic Resonance Spectroscopy/methods , Spectrophotometry, Ultraviolet/methods , Thiosemicarbazones/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...