Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(7)2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32268480

ABSTRACT

In this article, size-dependent vibrations and the stability of moving viscoelastic axially functionally graded (AFG) nanobeams were investigated numerically and analytically, aiming at the stability enhancement of translating nanosystems. Additionally, a parametric investigation is presented to elucidate the influence of various key factors such as axial gradation of the material, viscosity coefficient, and nonlocal parameter on the stability boundaries of the system. Material characteristics of the system vary smoothly along the axial direction based on a power-law distribution function. Laplace transformation in conjunction with the Galerkin discretization scheme was implemented to obtain the natural frequencies, dynamical configuration, divergence, and flutter instability thresholds of the system. Furthermore, the critical velocity of the system was evaluated analytically. Stability maps of the system were examined, and it can be concluded that the nonlocal effect in the system can be significantly dampened by fine-tuning of axial material distribution. It was demonstrated that AFG materials can profoundly enhance the stability and dynamical response of axially moving nanosystems in comparison to homogeneous materials. The results indicate that for low and high values of the nonlocal parameter, the power index plays an opposite role in the dynamical behavior of the system. Meanwhile, it was shown that the qualitative stability of axially moving nanobeams depends on the effect of viscoelastic properties in the system, while axial grading of material has a significant role in determining the critical velocity and natural frequencies of the system.

2.
Sci Rep ; 9(1): 13310, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527610

ABSTRACT

A highly sensitive microwave near-field sensor based on electrically-small planar resonators is proposed for highly accurate characterization of dielectric materials. The proposed sensor was developed in a robust complete-cycle topology optimization procedure wherein first the sensing area was pixelated. By maximizing the sensitivity as our goal, a binary particle swarm optimization algorithm was applied to determine whether each pixel is metalized or not. The outcome of the optimization is a pixelated pattern of the resonator yielding the maximum possible sensitivity. A curve fitting method was applied to the full-wave simulation results to derive a closed form expression for extracting the dielectric constant of a chemical material from the shift in the resonance frequency of the sensor. As a proof of concept, the sensor was fabricated and used to measure the permittivity of two known liquids (cyclohexane and chloroform) and their mixtures with different volume ratios. The experimentally extracted dielectric constants were in an excellent agreement with the reference data (for pure cyclohexane and chloroform) or those obtained by mixture formulas.

SELECTION OF CITATIONS
SEARCH DETAIL
...