Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 729: 138800, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32361437

ABSTRACT

Water soluble inorganic chemical ions of PM1 and PM2.5 and atmospheric trace gases were monitored simultaneously on hourly resolution at Indira Gandhi International Airport (IGIA), Delhi during 8 December 2017-10 February 2018. Monitoring was made by MARGA (Monitoring AeRosol and Gases in ambient Air) under winter fog experiment (WIFEX) program of the Ministry of Earth Sciences (MoES), Government of India. The result based on the analysis of the data so generated reveals that Cl-, NH4+, NO3- and SO42- were dominant ions in order which collectively constituted 96.8 and 97.3% of the of the total measured ionic mass in PM1 and PM2.5 respectively. Their overall average concentrations in PM1 were 19.5 ± 19.7, 18.4 ± 10.5, 16.6 ± 8.7 and 10.3 ± 5.7 µg/m3 and in PM2.5 were 36.0 ± 33.9, 32.7 ± 17.2, 28.5 ± 13.6 and 19.9 ± 13.9 µg/m3. Average concentrations of HCl, HNO3, HNO2, SO2 and NH3 trace gases were 0.7 ± 0.3, 2.7 ± 1.1, 6.6 ± 4.7, 22.0 ± 12.3 and 25.7 ± 9.1 µg/m3 respectively. Weather parameters along with low mixing height played significant role in the occurrence of high concentration of these chemical species. NH4+ was the prime neutralizer of the acidic components and mostly occurred in (NH4)2SO4/NH4HSO4, NH4NO3 and NH4Cl molecular forms. Major sources of these chemical species were fossil fuel combustion in aviation activity and transportation, coal burning in thermal power plants, industrial processes and emissions from biomass burning and agro-based activity. The quality of air with respect to PM2.5 always remained deteriorated. It became alarming during low visibility period mainly due to high concentration of Cl-, NO3-, SO42- and NH4+. Both meteorological and chemical processes interactively fed each other which occasionally resulted in fog development and visibility degradation. The knowledge gained by this study will help in simulation of atmospheric processes which lead to fog development and dispersal in the Delhi region.

2.
Sci Rep ; 9(1): 19171, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844084

ABSTRACT

Assessment of Sea Salt (SS) and Non-Sea Salt (NSS) aerosols in rainwater is important to understand the characterization of marine and continental aerosols and their source pathways. Sea salt quantification based on standard seawater ratios are primarily constrained with high uncertainty with its own limitations. Here, by the novelty of k-mean clustering and Positive Matrix Factorization (PMF) analysis, we segregate the air masses into two distinct clusters (oceanic and continental) during summer monsoon period signifying the complex intermingle of sources that act concomitantly. The rainwater composition during strong south-westerly wind regimes (cluster 2-oceanic) was profoundly linked with high sea salt and dust, whereas north-westerly low wind regimes (cluster 1-continental) showed an increase in SO42- and NO3-. However, SO42- abundance over NO3- in rain-water depicted its importance as a major acidifying ion at the region. The satellite-based observations indicate the presence of mid-tropospheric dust at the top (3-5 km) and marine sea salt at bottom acts as a "sandwich effect" for maritime clouds that leads to elevated Ca2+, Na+, Mg2+, and Cl- in rainwater. This characteristic feature is unique as sea spray generation due to high surface winds and dust aloft is only seen during this period. Furthermore, four source factors (secondary inorganic aerosol, mixed dust & sea salt, biomass burning & fertilizer use, and calcium neutralization) derived from PMF analysis showed contribution from local activities as well as long-range transport as dominant sources for the rainwater species.

3.
Sci Total Environ ; 662: 687-696, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30703726

ABSTRACT

Data on mass concentration of PM2.5 and its carbonaceous and water soluble inorganic chemical ions were compiled through sampling of PM2.5 at Indira Gandhi International Airport, Delhi during Dec. 16, 2015-Feb. 15, 2016 under Winter Fog Experiment (WIFEX) program of the Ministry of Earth Sciences (MoES) and analysing the samples. The data so generated were interpreted in terms of their variation on different time scales and apportioning their sources. It is found that mass concentration of PM2.5 averaged over the whole period of observation was 198.6±55.6. The concentration of organic carbon (OC) and elemental carbon (EC) was 24.7±9.4 and 11.7±4.7µg/m3 respectively with no any trend of increase or decrease over the observational period. SO42-, Cl- and NO3- dominated over other anions with their overall average concentration 34.0±23.1, 32.7±16.1 and 13.3±8.7µg/m3 respectively. Among cations, NH4+ showed highest concentration with an average value of 21.0±10.6µg/m3. Variation of daily average mass concentration of these parameters over the period of observation matched well with the variation of PM2.5 mass concentration indicating thereby to be the major contributors to the PM2.5 mass. NH4+ mostly occurred as NH4Cl and NH4NO3 and poorly as (NH4)2SO4 or NH4HSO4. H+ ion mostly occurred as H2SO4 and occasionally as HNO3. Carbonaceous aerosols and NO3- were mainly generated from fossil-fuel combustion. NH4+ and anthropogenic Cl- were mostly generated by biomass burning. The source of SO42- was found to be industries and thermal power plants. Continental Ca2+ and Mg2+ originated from thermal power plants and soil dust.

4.
Sci Total Environ ; 573: 894-905, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27599053

ABSTRACT

The ground and vertical profiles of particulate matter (PM) were mapped as part of a pilot study using a Tethered balloon within the lower troposphere (1000m) during the foggy episodes in the winter season of 2015-16 in New Delhi, India. Measurements of black carbon (BC) aerosol and PM <2.5 and 10µm (PM2.5 & PM10 respectively) concentrations and their associated particulate optical properties along with meteorological parameters were made. The mean concentrations of PM2.5, PM10, BC370nm, and BC880nm were observed to be 146.8±42.1, 245.4±65.4, 30.3±12.2, and 24.1±10.3µgm-3, respectively. The mean value of PM2.5 was ~12 times higher than the annual US-EPA air quality standard. The fraction of BC in PM2.5 that contributed to absorption in the shorter visible wavelengths (BC370nm) was ~21%. Compared to clear days, the ground level mass concentrations of PM2.5 and BC370nm particles were substantially increased (59% and 24%, respectively) during the foggy episode. The aerosol light extinction coefficient (σext) value was much higher (mean: 610Mm-1) during the lower visibility (foggy) condition. Higher concentrations of PM2.5 (89µgm-3) and longer visible wavelength absorbing BC880nm (25.7µgm-3) particles were observed up to 200m. The BC880nm and PM2.5 aerosol concentrations near boundary layer (1km) were significantly higher (~1.9 and 12µgm-3), respectively. The BC (i.e BCtot) aerosol direct radiative forcing (DRF) values were estimated at the top of the atmosphere (TOA), surface (SFC), and atmosphere (ATM) and its resultant forcing were - 75.5Wm-2 at SFC indicating the cooling effect at the surface. A positive value (20.9Wm-2) of BC aerosol DRF at TOA indicated the warming effect at the top of the atmosphere over the study region. The net DRF value due to BC aerosol was positive (96.4Wm-2) indicating a net warming effect in the atmosphere. The contribution of fossil and biomass fuels to the observed BC aerosol DRF values was ~78% and ~22%, respectively. The higher mean atmospheric heating rate (2.71Kday-1) by BC aerosol in the winter season would probably strengthen the temperature inversion leading to poor dispersion and affecting the formation of clouds. Serious detrimental impacts on regional climate due to the high concentrations of BC and PM (especially PM2.5) aerosol are likely based on this study and suggest the need for immediate, stringent measures to improve the regional air quality in the northern India.

5.
Environ Sci Pollut Res Int ; 22(3): 2041-50, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25167815

ABSTRACT

Atmospheric aerosols play a major role in the global climate change. A better physical characterization of the chemical composition of atmospheric aerosols, especially in remote atmosphere, is an important step to reduce the current uncertainty in their effect on the radiative forcing of the climate. In the present work, surface aerosols have been studied over the Southern Ocean and over Bharati, Indian Research Station at Larsemann Hills at the Antarctic coast during the summer season of 2009-2010. Aerosol samples were collected using optical particle counter (OPC) and high-volume air sampler. PM10 and PM2.5 aerosol samples were analyzed for various water-soluble and acid-soluble ionic constituents. The Hysplit model was used to compute the history of the air masses for their possible origin. Supplementary measurements of meteorological parameters were also used. The average mass concentration for PM10 over the Southern Ocean was found to be 13.4 µg m(3). Over coastal Antarctica, the mass of PM10 was 5.13 µg m(-3), whereas that of PM2.5 was 4.3 µg m(-3). Contribution of marine components, i.e., Na, Cl and Mg was dominant over the Southern Ocean (79 %) than over the coastal Antarctica where they were dominant in coarse mode (67 %) than in fine mode (53 %) aerosols. The NH4/nss-SO4 ratio of 1.12 in PM2.5 indicates that the NH4 and SO4 ions were in the form of NH4HSO4. Computation of enrichment factors indicate that elements of anthropogenic origin, e.g., Zn, Cu, Pb, etc., were highly enriched with respect to crustal composition.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Air Pollutants/chemistry , Environmental Monitoring , Seasons , Antarctic Regions , Climate Change , Hydrogen-Ion Concentration , Snow/chemistry , Time Factors
6.
Sci Rep ; 4: 3670, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24419075

ABSTRACT

First ever 3-day aircraft observations of vertical profiles of Black Carbon (BC) were obtained during the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted on 30(th) August, 4(th) and 6(th) September 2009 over Guwahati (26° 11'N, 91° 44'E), the largest metropolitan city in the Brahmaputra River Valley (BRV) region. The results revealed that apart from the surface/near surface loading of BC due to anthropogenic processes causing a heating of 2 K/day, the large-scale Walker and Hadley atmospheric circulations associated with the Indian summer monsoon help in the formation of a second layer of black carbon in the upper atmosphere, which generates an upper atmospheric heating of ~2 K/day. Lofting of BC aerosols by these large-scale circulating atmospheric cells to the upper atmosphere (4-6 Km) could also be the reason for extreme climate change scenarios that are being witnessed in the BRV region.

7.
Sci Total Environ ; 431: 323-31, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22705867

ABSTRACT

Vertical profiles of black carbon (BC) aerosol were determined from aircraft measurements under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program conducted by the Indian Institute of Tropical Meteorology, India during 2009 over Bangalore and Hyderabad in south India. BC mass loadings decreased approximately monotonically from 10(3) to 10(4) ng/m(3) at the surface to ~10(2) ng/m(3) at an altitude of about 7 km; although layers at intermediate levels containing anomalously high BC loadings were frequently encountered that were attributed mainly to the convective transport from surface sources accompanied by changes in the local boundary layer and atmospheric stability. In addition, as evidenced from air mass back trajectories; long range transport from distant sources contributed to some anomalous spikes in BC concentration. The presence of BC in cloud forming regions of the free troposphere could have important implications for cloud microphysics and subsequent rainfall mechanism over this region. Apart from this, the effects on human health are equally important.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Altitude , Carbon/analysis , India
8.
Sci Total Environ ; 414: 257-67, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22142645

ABSTRACT

A study on the chemical characterization of boundary layer aerosols is made based on the collection of TSP and size separated aerosol mass samples at Pune during March 2007-February 2008. This study will be helpful in simulating atmospheric processes responsible for aerosol development over Pune region and understanding its environmental implications related to radiation budget and climate. It is found that major fraction of Ca(2+) is locally generated by suspension of soil dust during all the seasons. During pre-monsoon season, coarse Mg(2+) is originated from the soil and the sea salt, whereas fine Mg(2+) is generated from the local biomass burning. Sizeable amount of SO(4)(2-) is emitted from local industrial and brick kiln's activities. Neutralization of NO(3)(-), generated both from biogenic and anthropogenic sources, is made by NH(3) gas generated mainly from anthropogenic sources. The data are further examined in terms of the factors specific to the individual seasons influencing physical and chemical characteristics of the boundary layer aerosols. The specific factors are: (a) Intense local convection during pre-monsoon season; (b) southwesterly wind flow and rainfall activity during monsoon season; and (c) Day time convection and occurrence of low level inversion during post-monsoon and winter seasons.


Subject(s)
Aerosols/chemistry , Air Pollutants/chemistry , Climate , Seasons , Soil/analysis , Vehicle Emissions/analysis , Calcium/analysis , Chromatography, Ion Exchange , Electric Conductivity , Hydrogen-Ion Concentration , India , Magnesium/analysis , Nitrates/analysis , Quaternary Ammonium Compounds/analysis , Spectrophotometry, Atomic , Sulfates/analysis
9.
Environ Pollut ; 87(2): 167-71, 1995.
Article in English | MEDLINE | ID: mdl-15091590

ABSTRACT

The chemical composition and pH of 30 fresh snow samples collected during December 1986 to May 1987 at Gulmarg (34 degrees 03' N, 74 degrees 24' E, 2655 m above mean sea level), a remote place in north India, were studied. The snow samples were, by and large, alkaline in nature and were largely influenced by non-marine aerosols. The concentrations of cations (Ca(2+), K(+) and Mg(2+)) were more than the anions (SO(2-)(4) and NO(-)(3)). Factor analysis indicated that most of the ionic components were transported into the region during the period of measurements. The transport of ionic components could be attributed to the passage of western disturbances over this region. The comparison of concentrations of anions and cations in the snow samples at Gulmarg with those reported from a few countries in the west revealed that the composition of Gulmarg snow largely differs in the concentrations of cations rather than anions. Among the cations, the concentration of Ca(2+) was high at Gulmarg and this could be responsible for buffering the pH of snow in the alkaline range.

SELECTION OF CITATIONS
SEARCH DETAIL
...