Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 837
Filter
1.
Front Pharmacol ; 15: 1364138, 2024.
Article in English | MEDLINE | ID: mdl-38841373

ABSTRACT

Introduction: The most common primary brain tumor in adults is glioblastoma multiforme (GBM), accounting for 45.2% of all cases. The characteristics of GBM, a highly aggressive brain tumor, include rapid cell division and a propensity for necrosis. Regretfully, the prognosis is extremely poor, with only 5.5% of patients surviving after diagnosis. Methodology: To eradicate these kinds of complicated diseases, significant focus is placed on developing more effective drugs and pinpointing precise pharmacological targets. Finding appropriate biomarkers for drug discovery entails considering a variety of factors, including illness states, gene expression levels, and interactions between proteins. Using statistical techniques like p-values and false discovery rates, we identified differentially expressed genes (DEGs) as the first step in our research for identifying promising biomarkers in GBM. Of the 132 genes, 13 showed upregulation, and only 29 showed unique downregulation. No statistically significant changes in the expression of the remaining genes were observed. Results: Matrix metallopeptidase 9 (MMP9) had the greatest degree in the hub biomarker gene identification, followed by (periostin (POSTN) at 11 and Hes family BHLH transcription factor 5 (HES5) at 9. The significance of the identification of each hub biomarker gene in the initiation and advancement of glioblastoma multiforme was brought to light by the survival analysis. Many of these genes participate in signaling networks and function in extracellular areas, as demonstrated by the enrichment analysis.We also identified the transcription factors and kinases that control proteins in the proteinprotein interactions (PPIs) of the DEGs. Discussion: We discovered drugs connected to every hub biomarker. It is an appealing therapeutic target for inhibiting MMP9 involved in GBM. Molecular docking investigations indicated that the chosen complexes (carmustine, lomustine, marimastat, and temozolomide) had high binding affinities of -6.3, -7.4, -7.7, and -8.7 kcal/mol, respectively, the mean root-mean-square deviation (RMSD) value for the carmustine complex and marimastat complex was 4.2 Å and 4.9 Å, respectively, and the lomustine and temozolomide complex system showed an average RMSD of 1.2 Å and 1.6 Å, respectively. Additionally, high stability in root-mean-square fluctuation (RMSF) analysis was observed with no structural conformational changes among the atomic molecules. Thus, these in silico investigations develop a new way for experimentalists to target lethal diseases in future.

2.
Front Chem ; 12: 1386311, 2024.
Article in English | MEDLINE | ID: mdl-38803382

ABSTRACT

Nano compounds, especially metal-organic frameworks (MOFs), have significant properties. Among the most important properties of these compounds, which depend on their specific surface area and porosity, are biological properties, such as anticancer and antibacterial properties. In this study, a new titanium/BTB metal-organic framework (Ti/BTB-MOF) was synthesized by using titanium nitrate and 1,3,5-Tris(4-carboxyphenyl)benzene (BTB) under microwave radiation. The structure of the synthesized Ti/BTB-MOF was characterized and confirmed using X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS) analysis, Fourier transform infrared (FT-IR) spectra, energy-dispersive X-ray (EDAX) analysis mapping, scanning electron microscope (SEM) images, thermogravimetric analysis (TGA) curves, and Brunauer-Emmett-Teller (BET) analysis. The in vitro anticancer properties of Ti/BTB-MOF were evaluated using the MTT method against MG-63/bone cancer cells and A-431/skin cancer cells. The in vitro antibacterial activity was tested using the Clinical and Laboratory Standards Institute (CLSI) guidelines. In the anticancer activity, IC50 (half-maximal inhibitory concentration) values of 152 µg/mL and 201 µg/mL for MG-63/bone cancer cells and A-431/skin cancer cells, respectively, were observed. In the antibacterial activity, minimum inhibitory concentrations (MICs) of 2-64 µg/mL were observed against studied pathogenic strains. The antimicrobial activity of Ti/BTB-MOF was higher than that of penicillin and gentamicin. Therefore, the synthesized Ti/BTB-MOF could be introduced as a suitable bioactive candidate.

3.
Saudi Pharm J ; 32(3): 101971, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38357701

ABSTRACT

Triple-negative breast cancer (TNBC) comprises 10 % to 20 % of breast cancer, however, it is more dangerous than other types of breast cancer, because it lacks druggable targets, such as the estrogen receptors (ER) and the progesterone receptor (PR), and has under expressed receptor tyrosine kinase, ErbB2. Present targeted therapies are not very effective and other choices include invasive procedures like surgery or less invasive ones like radiotherapy and chemotherapy. This study investigated the potential anticancer activity of some novel quinazolinone derivatives that were designed on the structural framework of two approved anticancer drugs, Ispinesib (KSP inhibitor) and Idelalisib (PI3Kδ inhibitor), to find out solutions for TNBC. All the designed derivatives (3a-l) were subjected to extra precision molecular docking and were synthesized and spectrally characterized. In vitro enzyme inhibition assay of compounds (3a, 3b, 3e, 3 g and 3 h) revealed their nanomolar inhibitory potential against the anticancer targets, KSP and PI3Kδ. Using MTT assay, the cytotoxic potential of compounds 3a, 3b and 3e were found highest against MDA-MB-231 cells with an IC50 of 14.51 µM, 16.27 µM, and 9.97 µM, respectively. Remarkably, these compounds were recorded safe against the oral epithelial normal cells with an IC50 values of 293.60 µM, 261.43 µM, and 222 µM, respectively. The anticancer potential of these compounds against MDA-MB-231 cells was revealed to be associated with their apoptotic activity. This was established by examination with the inverted microscope that revealed the appearance of various apoptotic features like cell shrinkage, apoptotic bodies, and membrane blebbing. Using flow cytometry, the Annexin V/PI-stained cancer cells showed an increase in early and late apoptotic cells. In addition, DNA fragmentation was revealed to occur after treatment with the tested compounds by gel electrophoresis. The relative gene expression of pro-apoptotic and anti-apoptotic genes revealed an overexpression of the P53 and BAX genes and a downregulation of the BCL-2 gene by real-time PCR. So, this work proved that compounds 3a, 3b, and 3e could be developed as anticancer candidates, via their P53-dependent apoptotic activity.

4.
Anaesth Rep ; 12(1): e12273, 2024.
Article in English | MEDLINE | ID: mdl-38222107

ABSTRACT

Airway compromise is the most significant complication of a postoperative neck haematoma. Here, we report the management of a case of complete airway obstruction secondary to an acute neck haematoma arising after radical neck dissection, partial glossectomy and a free flap reconstruction. The patient deteriorated precipitously and required immediate emergency surgical front of neck access to secure the airway. Drawing on our experience of this case, we propose a mental model to inform the emergency airway management of postoperative neck haematoma following all types of surgery.

5.
J Biomol Struct Dyn ; 42(5): 2358-2368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37099644

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen with ability to cause serious infection such as bacteremia, ventilator associated pneumonia, and wound infections. As strains of A. baumannii are resistant to almost all clinically used antibiotics and with the emergence of carbapenems resistant phenotypes warrants the search for novel antibiotics. Considering this, herein, a series of computer aided drug designing approach was utilized to search novel chemical scaffolds that bind stronger to MurE ligase enzyme of A. baumannii, which is involved peptidoglycan synthesis. The work identified LAS_22461675, LAS_34000090 and LAS_51177972 compounds as promising binding molecules with MurE enzyme having binding energy score of -10.5 kcal/mol, -9.3 kcal/mol and -8.6 kcal/mol, respectively. The compounds were found to achieve docked inside the MurE substrate binding pocket and established close distance chemical interactions. The interaction energies were dominated by van der Waals and less contributions were seen from hydrogen bonding energy. The dynamic simulation assay predicted the complexes stable with no major global and local changes noticed. The docked stability was also validated by MM/PBSA and MM/GBSA binding free energy methods. The net MM/GBSA binding free energy of LAS_22461675 complex, LAS_34000090 complex and LAS_51177972 complex is -26.25 kcal/mol, -27.23 kcal/mol and -29.64 kcal/mol, respectively. Similarly in case of MM-PBSA, the net energy value was in following order; LAS_22461675 complex (-27.67 kcal/mol), LAS_34000090 complex (-29.94 kcal/mol) and LAS_51177972 complex (-27.32 kcal/mol). The AMBER entropy and WaterSwap methods also confirmed stable complexes formation. Further, molecular features of the compounds were determined that predicted compounds to have good druglike properties and pharmacokinetic favorable. The study concluded the compounds to good candidates to be tested by in vivo and in vitro experimental assays.Communicated by Ramaswamy H. Sarma.


Subject(s)
Acinetobacter baumannii , Molecular Dynamics Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Carbapenems , Ligases , Molecular Docking Simulation
6.
Ludovica pediátr ; 26(2): 7-17, dic.2023. graf
Article in Spanish | LILACS | ID: biblio-1531120

ABSTRACT

La emergencia de bacterias productoras de carbapenemasas (BPC) representa un problema de salud pública. La vigilancia epidemiológica constituye una herramienta fundamental para el control de la diseminación


The emergence of carbapenemase-producing bacteria (PCBs) represents a public health problem. Epidemiological surveillance constitutes a fundamental tool for the control of dissemination


Subject(s)
Infection Control , Epidemiological Monitoring , Carbapenems , Carbapenem-Resistant Enterobacteriaceae
7.
Pathol Res Pract ; 252: 154908, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950931

ABSTRACT

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.


Subject(s)
Apoptosis , Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Neoplasms/metabolism
8.
Article in English | MEDLINE | ID: mdl-37615851

ABSTRACT

Ovarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets. To achieve this, the dataset GEO2R was used to retrieve differentially expressed genes. The study identified a total of five genes (CDKN1A, DKK1, CYP1B1, NTS, and GDF15) that were differentially expressed in OC. Subsequently, a network analysis was performed using the STRING database, followed by the construction of a network using Cytoscape. The network analyzer tool in Cytoscape predicted 276 upregulated and 269 downregulated genes. Furthermore, KEGG analysis was conducted to identify different pathways related to OC. Subsequently, survival analysis was performed to validate gene expression alterations and predict hub genes, using a p-value of 0.05 as a threshold. Four genes (CDKN1A, DKK1, CYP1B1, and NTS) were predicted as significant hub genes, while one gene (GDF15) was predicted as non-significant. The adjusted P values of said predicted genes are 2.85E - 07, 5.49E - 06, 4.28E - 07, 1.43E - 07, and 3.70E - 07 for CDKN1A, DKK1, NTS, GDF15, and CYP1B1 respectively; additionally 6.08, 5.76, 5.74, 5.01, and 4.9 LogFc values of the said genes were predicted in GEO data set. In a boxplot analysis, the expression of these genes was analyzed in normal and tumor cells. The study found that three genes were highly expressed in tumor cells, while two genes (CDKN1A and DKK1) were more elevated in normal cells. According to the boxplot analysis for CDKN1A, 50% of tumor cells ranged between approx 3.8 and 5, while 50% of normal cells ranged between approx 6.9 and 7.9, which is greater than tumor cells. This shows that in normal cells, the CYP1B1 has a high expression level according to the GEPIA boxplot; addtionally the boxplot for DKK1 indicated that 50% of tumor cells ranged between approx 0 and 0.5, which was less than that of normal cells which ranged between approx 0.3 and 0.9. It shows that DKK1 is highly expressed in normal genes. Overall, the current study provides novel insights into the molecular mechanisms underlying OC. The identified hub genes and drug candidate targets could potentially serve as alternative diagnostic and therapeutic options for OC patients. Further research is needed to investigate the clinical significance of these findings and develop effective interventions that can improve the prognosis of patients with OC.

9.
Molecules ; 28(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37513420

ABSTRACT

The discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa. The most active compound, 5d, showed broad-spectrum anti-cancer activities against all tested cell lines (IC50 = 1.94-7.1 µM) in comparison to doxorubicin (IC50 = 3.18-5.57 µM). Interestingly, compound 5d exhibited lower toxicity in the normal WI-38 cells (IC50 = 40.85 µM) than doxorubicin (IC50 = 6.72 µM), indicating a good safety profile. Additionally, the potential of compound 5d as a multi-targeted kinase inhibitor was examined against different protein kinases, including VEGFR2, EGFR, HER2, and CDK2. In comparison to the corresponding positive controls, compound 5d exhibited comparable activities in nanomolar ranges against HER2, EGFR, and VEGFR2. However, compound 5d was the least active against CDK2 (2.097 ± 0.126 µM) when compared to the positive control roscovitine (0.32 ± 0.019 µM). The apoptotic activity investigation in HepG2 cells demonstrated that compound 5d arrested the cell cycle at the S phase and induced early and late apoptosis. Furthermore, the results demonstrated that the apoptosis pathway was provoked due to an upregulation in the expression of the proapoptotic genes caspase-3, caspase-9, and Bax and the downregulation of the Bcl-2 anti-apoptotic gene. For the in silico docking studies, compound 5d showed relative binding interactions, including hydrogen, hydrophobic, and halogen bindings, with protein kinases that are similar to the reference inhibitors.


Subject(s)
Antineoplastic Agents , Humans , Molecular Structure , Structure-Activity Relationship , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Antineoplastic Agents/chemistry , ErbB Receptors/metabolism , Doxorubicin/pharmacology , Apoptosis , Protein Kinase Inhibitors/chemistry
10.
Sci Rep ; 13(1): 7014, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117557

ABSTRACT

The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms α-alkyl ß-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Polyketide Synthases , Molecular Dynamics Simulation , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Drug Discovery , Tuberculosis/drug therapy , Tuberculosis/microbiology , Molecular Docking Simulation
11.
J Biomol Struct Dyn ; 41(22): 12768-12776, 2023.
Article in English | MEDLINE | ID: mdl-36644848

ABSTRACT

Clostridioides difficile is a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat C. difficile infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against C. difficile. ∼2500 therapeutically important phyto-compounds were docked against the active sites of TcdB protein by using AutoDock-Vina software. The interactions between the ligands and the binding site of the top five docked complexes, based on the docking scores, were further elucidated by Molecular Dynamics Simulations of 500 ns, Molecular Mechanics Energies combined with the Poisson-Boltzmann and Surface Area (MMPBSA) or Generalized Born and Surface Area (MMGBSA), and WaterSwap Analysis. Findings of molecular docking suggested that natural compounds A183, A704, A1528, A2083, and A2129 with distinct chemical scaffolds are best docked in the binding site of TcdB and their bonding remained stable throughout the simulation studies of 500 ns. Compounds A2129 and A704 can be considered as prospective drug candidates against Clostridioides difficile, however, further wet lab experiments are needed to confirm our study.Communicated by Ramaswamy H. Sarma.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Virulence Factors , Molecular Docking Simulation , Clostridioides , Phytochemicals/pharmacology
12.
J Chromatogr Sci ; 61(4): 329-338, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36644892

ABSTRACT

The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 µm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.


Subject(s)
Skin , Liposomes/chemistry , Gels/chemistry , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Animals , Mice , Skin/chemistry , Diclofenac/chemistry , Resveratrol/chemistry , Calibration
13.
J Biomol Struct Dyn ; 41(17): 8535-8543, 2023.
Article in English | MEDLINE | ID: mdl-36264105

ABSTRACT

Tuberculosis (TB) remains as one of the major public health concerns worldwide. A successful TB control and treatment is very challenging, due to continuing emergence of Mycobacterium tuberculosis strains resistant to known drugs. Therefore, the development of new drugs with different chemical and biological approaches is necessary to obtain more efficient anti-tubercular therapeutics. Biotin is an essential cofactor for lipid biosynthesis and gluconeogenesis in M. tuberculosis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. In this study, comprehensive in silico methods including structure-based virtual screening, molecular docking, and molecular dynamic simulation analysis for ∼8000 marine natural products were performed against two essential enzymes involved in biotin synthesis and ligation of M. tuberculosis namely, pyridoxal 5'-phosphate-dependent transaminase (BioA) and mycobacterial biotin protein ligase (MtBPL). Two compounds; CMNPD10112 and CMNPD10113 are unveiled to bind the enzymes consistently and with high affinities. The binding pattern of compounds is further noticed in very stable binding modes as analyzed by molecular dynamics simulation and the mean RMSD of the complexes is within 4 Å. The intermolecular binding free energies validated complexes are less than -40 kcal/mol, which demonstrates strong and stable complexes formation. The identified hit compounds could be seeds for design of effective anti-mycobacterium therapeutics by inhibition of bacterial growth through blocking the biotin biosynthesis.Communicated by Ramaswamy H. Sarma.

15.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235011

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has stressed the global health system to a significant level, which has not only resulted in high morbidity and mortality but also poses a threat for future pandemics. This situation warrants efforts to develop novel therapeutics to manage SARS-CoV-2 in specific and other emerging viruses in general. This study focuses on SARS-CoV2 RNA-dependent RNA polymerase (RdRp) mutations collected from Saudi Arabia and their impact on protein structure and function. The Saudi SARS-CoV-2 RdRp sequences were compared with the reference Wuhan, China RdRp using a variety of computational and biophysics-based approaches. The results revealed that three mutations-A97V, P323I and Y606C-may affect protein stability, and hence the relationship of protein structure to function. The apo wild RdRp is more dynamically stable with compact secondary structure elements compared to the mutants. Further, the wild type showed stable conformational dynamics and interaction network to remdesivir. The net binding energy of wild-type RdRp with remdesivir is -50.76 kcal/mol, which is more stable than the mutants. The findings of the current study might deliver useful information regarding therapeutic development against the mutant RdRp, which may further furnish our understanding of SARS-CoV-2 biology.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , COVID-19/genetics , Humans , Molecular Docking Simulation , Mutation , Pandemics , Protein Binding , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , Saudi Arabia
16.
Dose Response ; 20(3): 15593258221125477, 2022.
Article in English | MEDLINE | ID: mdl-36106059

ABSTRACT

Present research work evaluates variation in volatile chemicals profile and biological activities of essential oil (EO) obtained from the leaves of eucalyptus (Eucalyptus camaldulensis Dehnh.) using hydro-distillation (HD) and supercritical fluid extraction (SFE). The yield (1.32%) of volatile oil by HD was higher than the yield (.52%) of the SFE method (P < .05). The results of physical factors like density, color, refractive index, and solubility of the EOs produced by both the methods showed insignificant variations. Gas chromatography - mass spectrometry (GC-MS) compositional analysis showed that eucalyptol (31.10% and 30.43%) and α-pinene (11.02% and 10.35%) were the main constituents detected in SFE and HD extracted Eucalyptus camaldulensis EO, respectively. Antioxidant activity-related parameters, such as reducing ability and DPPH free radical scavenging capability exhibited by EO obtained via SFE were noted to be better than hydro-distilled EO. Supercritical fluid extracted and hydro-distilled essential oils demonstrated a considerable but variable antimicrobial potential against selected bacterial and fungal strains. Interestingly, oil extracted by SFE showed relatively higher hemolytic activity and biofilm inhibition potential. The variation in biological activities of tested EOs can be linked to the difference in the volatile bioactives composition due to different isolation techniques. In conclusion, the EO obtained from Eucalyptus leaves by the SFE method can be explored as a potential antioxidant and antimicrobial agent in the functional food and nutra-pharmaceutical sector.

17.
J Chromatogr Sci ; 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35989674

ABSTRACT

A validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the first-ever simultaneous analysis of neratinib, curcumin and internal standard (imatinib) using acetonitrile as the liquid-liquid extraction medium. On a BEH C18 (100 mm × 2.1 mm, 1.7 µm) column, the analytes were separated isocratically using acetonitrile (0.1% formic acid):0.002M ammonium acetate. The flow rate was set at 0.5 mL.min-1. The authors utilized multiple reaction monitoring-based transitions for the precursor-to-product ion with m/z 557.099 â†’ 111.928 for neratinib, m/z 369.231 â†’ 176.969 curcumin and m/z 494.526 â†’ 394.141 for imatinib during the study. Validation of the method as per United States Food and Drug Administration requirements for linearity (5-40 ng mL-1), accuracy and precision, stability, matrix effect, etc. were investigated and were observed to be acceptable. Afterward, we evaluated the method for establishing its greenness profile by using two greenness assessment tools and found it green. Overall, a reliable green UPLC-MS/MS method was devised and used to estimate neratinib and curcumin in human plasma simultaneously.

18.
J Biomol Struct Dyn ; 40(15): 6810-6816, 2022 09.
Article in English | MEDLINE | ID: mdl-33682611

ABSTRACT

An efficient process for the preparation of a new ethyl 2-((3-(4-fluorophenyl)-6-methyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio) acetate (5) was described. The prepared derivative was synthesized using the S-arylation method. Several analytical techniques, such as NMR, Raman and infrared spectroscopy, were used to characterize this compound. The compound was screened for cytotoxic activity against three human cancer cell lines: human cervical cancer (HeLa), human lung adenocarcinoma (A549) and triple negative breast cancer (MDA-MB-231) cells using an MTT assay. It exhibited potent cytotoxic activity against the tested cell lines with IC50 values in the low micromolar range when compared to a standard drug, docetaxel. It also displayed potent inhibitory activity towards VEGFR-2 and EGFR tyrosine kinases, reflecting its potential to act as an effective anti-cancer agent.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinazolinones/pharmacology , Structure-Activity Relationship , Tyrosine , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-2/pharmacology
19.
Ludovica pediátr ; 24(1): 6-14, Ene.-Jul.2021.
Article in Spanish | LILACS, Redbvs, BINACIS | ID: biblio-1293217

ABSTRACT

Introducción:La transmisión congénita de Trypanosoma cruzi constituye, en la actualidad, la vía que genera mayor cantidad de nuevos casos de infección aguda. El diagnóstico y tratamiento temprano aseguran una elevada probabilidad de cura parasitológica. El objetivo del trabajo fue evaluar el seguimiento de potenciales casos de Chagas Congénito, estimar la tasa de transmisión materno-fetal y la capacidad diagnóstica del microhematocrito. Materiales y métodos: Se realizó un estudio descriptivo transversal sobre hijos de mujeres con Chagas, que concurrieron al Laboratorio Central del H.I.A.E.P. Sor María Ludovica durante abril 2013-febrero 2019. Los niños fueron estudiados por microhematocrito y pruebas serológicas. Los resultados se obtuvieron del Sistema Informático de Laboratorio de Wiener®. Resultados: En el período de tiempo evaluado, fueron estudiados por microhematocrito un total de 268 niños (edad promedio= 2,35 meses), obteniéndose 16 resultados positivos. De los 252 niños con microhematocrito negativo, 58 fueron seguidos por pruebas serológicas hasta el año de vida, obteniéndose 3 resultados positivos. Se evidenció una pérdida de seguimiento serológico del 77%. La tasa de transmisión congénita estimada fue del 6,9% y el porcentaje de detección diagnóstica de la técnica directa, del 84,2%. Conclusión: La búsqueda de infección congénita en hijos de mujeres con Chagas, y su seguimiento hasta el año de vida, resulta esencial para lograr la detección y tratamiento temprano de nuevos casos. Sin embargo, la pérdida de seguimiento de potenciales casos de Chagas Congénito resulta alarmante. Esto enfatiza la necesidad de plantear estrategias sólidas para mejorar la aplicación del algoritmo diagnóstico


Introduction:Congenital Trypanosoma cruzi transmission is currently the route that generates the largest number of new cases of acute infection. Early diagnosis and treatment ensure a high probability of parasitological cure. The aim of this article was to evaluate the follow-up of possible cases of Congenital Chagas, to estimate the maternal-fetal transmission rate and the diagnostic capacity of microhematocrit. Materials and methods: A cross-sectional descriptive study was carried out on children born from Chagasic women, who attended the Central Laboratory of the H.I.A.E.P Sor María Ludovica during April 2013-February 2019. The children were studied by microhematocrit and serological tests. The results were obtained from the Wiener® Laboratory Information System. Results: In the evaluated time period, a total of 268 children (mean age = 2.35 months) were studied by microhematocrit, obtaining 16 positive results. Among the 252 children with negative microhematocrit, 58 were followed by serological tests up to one year of life, obtaining 3 positive results. A 77% loss of serological follow-up was evidenced. The estimated congenital transmission rate was 6.9% and the percentage of diagnostic detection of the direct technique was 84.2%. Conclusion: The search for congenital infection in children born from Chagasic women, and its follow-up until one year of life, is essential to achieve the early detection and treatment of new cases. However, the loss of follow-up of potential cases of Congenital Chagas is alarming. This emphasizes the need to propose solid strategies to improve the application of the diagnostic algorithm


Subject(s)
Infant , Child, Preschool , Serologic Tests , Chagas Disease , Diagnosis
20.
Colloids Surf B Biointerfaces ; 208: 112044, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34419810

ABSTRACT

Carbon nanotubes (CNTs), a versatile nanocarrier for doxorubicin (DOX) delivery had attracted significant attention in drug delivery of pharmaceuticals. Several properties such as high surface area, high drug loading capacity, stability, ease of functionalization, ultrahigh length to diameter ratio and good cellular uptake make them preferred nanocarrier as multipurpose drug delivery system. Several surface properties of CNTs can be easily modified by covalent/noncovalent functionalization, which can make CNTs a profound nanomaterial. Hydrophobic surface of CNTs facilitated π-π stacking interactions, with several drugs and therapeutic agents having aromatic ring in their structure, for example anthracyclines. In case some drug molecules, electrostatic interaction between drug and CNTs comes into the picture. DOX, an anthracycline anticancer drug, can easily adsorb on the surface of CNTs by π-π stacking interactions. In present article, we have reviewed various CNTs based drug delivery systems for the delivery of DOX alone or in combination with genetic materials and other drug molecules. In addition, we described recent updates in CNTs based drug delivery system for the delivery of DOX, we covered adsorption and desorption, different types of functionalization, to alter the properties of CNTs in vitro and in vivo. CNT attached many targeting ligands for the targeted delivery of DOX have also been discussed.


Subject(s)
Antineoplastic Agents , Nanotubes, Carbon , Antibiotics, Antineoplastic , Doxorubicin , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...