Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Iran J Biotechnol ; 22(1): e3714, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38827341

ABSTRACT

Background: CHO cells are preferred for producing biopharmaceuticals, and genome editing technologies offer opportunities to enhance recombinant protein production. Targeting apoptosis-related genes, such as Caspases 8-Associated Protein 2 (CASP8AP2), improves CHO cell viability and productivity. Integrating robust strategies with the CRISPR-Cas9 system enables its application in CHO cell engineering. Objectives: This study was performed to develop a cost-effective protocol using the CRISPR-Cas9 system combined with the HITI strategy for simultaneous CASP8AP2 gene deletion/insertion in CHO cells and to assess its impact on cell viability and protein expression. Materials and Methods: We developed an efficient protocol for CHO cell engineering by combining CRISPR/Cas9 with the HITI strategy. Two distinct sgRNA sequences were designed to target the 3' UTR region of the CASP8AP2 gene using CHOPCHOP software. The gRNAs were cloned into PX459 and PX460-1 vectors and transfected into CHO cells using the cost-effective PEI reagent. A manual selection system was employed to streamline the process of single-cell cloning. MTT assays assessed gene silencing and cell viability at 24, 48, and 72 hours. Flow cytometry evaluated protein expression in CASP8AP2-silenced CHO cells. Results: The study confirmed the robustness of combining CRISPR-Cas9 with the HITI strategy, achieving a high 60% efficiency in generating knockout clones. PEI transfection successfully delivered the constructs to nearly 65% of the clones, with the majority being homozygous. The protocol proved feasible for resource-limited labs, requiring only an inverted fluorescent microscope. CASP8AP2 knockout (CHO-KO) cells exhibited significantly extended cell viability compared to CHO-K1 cells when treated with NaBu, with IC50 values of 7.28 mM and 14.25 mM at 48 hours, respectively (P-value 24 hours ≤ 0.0001, 48 hours ≤ 0.0001, P-value 72 hours = 0.0007). CHO CASP8AP2-silenced cells showed a 1.3-fold increase in JRed expression compared to native cells. Conclusions: CRISPR-Cas9 and HITI strategy was used to efficiently engineer CHO cells for simultaneous CASP8AP2 gene deletion/insertion, which improved cell viability and protein expression.

2.
Korean J Orthod ; 54(3): 153-159, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38800860

ABSTRACT

Objective: This study aimed to assess the effects of commonly consumed hot drinks on the force decay of orthodontic elastomeric chains. Methods: This in vitro experimental study evaluated 375 pieces of elastomeric chains with six rings placed on a jig. Four rings were stretched by 23.5 mm corresponding to the approximate distance between the canine and the second premolar. Fifteen pieces served as reference samples at time zero, and 360 pieces were randomized into four groups: control, hot water, hot tea, and hot coffee. Each group was further divided into six subgroups (n = 15) according to the different exposure periods. The specimens in the experimental groups were exposed to the respective solutions at 65.5°C four times per day for 90 seconds at 5-second intervals. The control group was exposed to artificial saliva at 37°C. The force decay of the samples was measured at 1, 2, 7, 14, 21, and 28 days using a universal testing machine. Data were analyzed using repeated-measures analysis of variance. Results: Maximum force decay occurred on day 1 in all groups. The minimum force was recorded in the control group, followed by the tea, coffee, and hot water groups on day 1. At the other time points, the minimum force was observed in the tea group, followed by the control, coffee, and hot water groups. Conclusions: Patients can consume hot drinks without concern about any adverse effect on force decay of the orthodontic elastomeric chains.

3.
Genet Test Mol Biomarkers ; 28(4): 159-164, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657123

ABSTRACT

Introduction: Sleep is one of the most significant parts of everyone's life. Most people sleep for about one-third of their lives. Sleep disorders negatively impact the quality of life. Obstructive sleep apnea (OSA) is a severe sleep disorder that significantly impacts the patient's life and their family members. This study aimed to investigate the relationship between rs6313 and rs6311 polymorphisms in the serotonin receptor type 2A gene and OSA in the Kurdish population. Materials and Methods: The study's population comprises 100 OSA sufferers and 100 healthy people. Polysomnography diagnostic tests were done on both the patient and control groups. The polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to investigate the relationship between OSA and LEPR gene polymorphisms. Results: Statistical analysis showed a significant relationship between genotype frequencies of patient and control groups of rs6311 with OSA in dominant [odds ratio (OR) = 5.203, p < 0.001) and codominant models (OR = 9.7, p < 0.001). Also, there was a significant relationship between genotype frequencies of patient and control groups of rs6313 with OSA in dominant (OR = 10.565, p < 0.001) and codominant models (OR = 5.938, p < 0.001). Conclusions: Findings from the study demonstrated that the two polymorphisms rs6311 and rs6313 could be effective at causing OSA; however, there was no correlation between the severity of the disease and either of the two polymorphisms.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptor, Serotonin, 5-HT2A , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/genetics , Iran , Male , Female , Adult , Middle Aged , Receptor, Serotonin, 5-HT2A/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency/genetics , Case-Control Studies , Genotype , Polysomnography/methods , Alleles , Polymorphism, Restriction Fragment Length , Receptors, Leptin/genetics , Genetic Association Studies/methods
4.
Article in English | MEDLINE | ID: mdl-38616741

ABSTRACT

BACKGROUND: Breast cancer remains a leading cause of cancer-related deaths among women, primarily attributed to the formidable challenge of multidrug resistance, often driven by the overexpression of the ABCB1 gene. OBJECTIVE: This study aimed to assess the synergistic effects of siRNA, doxorubicin, and vinorelbine on ABCB1 gene expression and cell viability in doxorubicin-resistant MCF-7/ADR breast cancer cells, with siRNA targeting ABCB1 to reduce its expression and doxorubicin/ vinorelbine to eradicate cancer cells. METHODS: Our methodology involved culturing MCF-7 and MCF-7/ADR cells in standard cell culture conditions. The synthesized siRNA sequences transfected cells with siRNA at final concentrations of 10, 20, and 30 nM and assessed cell viability using the MTT assay was performed. Real-time PCR was employed to quantify ABCB1 mRNA expression levels. RESULTS: Results indicated that MCF-7/ADR cells exhibited substantial resistance to vinorelbine and doxorubicin compared to MCF-7 cells, displaying resistance at 12.50 µM and 25.00 µM for vinorelbine and 6.25 µM and 25.00 µM for doxorubicin. Remarkably, siRNA treatment effectively reversed drug resistance in MCF-7/ADR cells across all concentrations of vinorelbine and doxorubicin tested. When combined, siRNA, doxorubicin, and vinorelbine yielded a significantly greater reduction in cell viability compared to individual drug treatments, particularly at a 20 µM siRNA concentration. This combination therapy also significantly suppressed ABCB1 gene expression by a factor of 41.48 in MCF-7 cells relative to MCF-7/ADR cells. CONCLUSION: these findings suggest that combining siRNA, doxorubicin, and vinorelbine holds promise as a therapeutic strategy to overcome ABCB1-mediated multidrug resistance in breast cancer. Further investigations and clinical trials are warranted to evaluate its clinical efficacy rigorously.

5.
Invest New Drugs ; 42(3): 272-280, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38536544

ABSTRACT

Breast cancer is a leading cause of death in women worldwide. Cancer therapy based on stem cells is considered as a novel and promising platform. In the present study, we explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through the reduction of focal adhesion kinase (FAK) activity, SHP-2, and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvß3 expression in MDA-MB-231 breast cancer cells. For this purpose, we employed a co-culture system using 6-well plate transwell. After 72 h, hAMSCs-treated MDA-MB-231 breast cancer cells, the activity of focal adhesion kinase (FAK) and the expression of SHP-2 and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvß3 expression were analyzed using western blot. The shape and migration of cells were also analyzed. Based on our results, a significant reduction in tumor cell motility through downregulation of the tyrosine phosphorylation level of FAK (at Y397 and Y576/577 sites) and cell adhesion expression in MDA-MB-231 breast cancer cells was demonstrated. Our findings indicate that hAMSCS secretome has therapeutic effects on cancer cell migration through downregulation of FAK activity and expression of cell adhesion proteins.


Subject(s)
Breast Neoplasms , Cell Movement , Mesenchymal Stem Cells , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Cell Adhesion , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphorylation , Coculture Techniques , Protein Tyrosine Phosphatase, Non-Receptor Type 11
6.
Methods Mol Biol ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38502468

ABSTRACT

The co-culture method is a simple type of cell culture method used to evaluate the effects of communication between various types of cells in an in vitro setting. In the co-culture method, two or more eukaryotic cell types, or eukaryotic and prokaryotic cells, are cultured together. The co-culture method reflects in vivo cell behaviors and thereby emerges as a pivotal technique with diverse applications in cancer research and cell biology. Two categories of co-culture methods (indirect methods and direct methods) are well known. Direct co-culture methods allow physical contact between the various cell types (juxtacrine signaling). In indirect methods, cells are physically separated into two different populations (for example, using a Transwell) that allow communication only via secretory factors (paracrine signaling). Herein, we focus on the principles of the indirect co-culture method. Nowadays, this method is used to explore the effects of mesenchymal stem cell (MSC) secretome on cancer cells. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell proliferation, invasion, apoptosis, and polarity.

7.
BMC Oral Health ; 24(1): 231, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350943

ABSTRACT

BACKGROUND: Vertical maxillary excess (VME) is one of the most common reasons for seeking orthodontic treatment. Total intrusion with aligners is a promising alternative to surgery in some cases. Considering the elastic deformation of aligners, this study aimed to evaluate the possible desirable and undesirable teeth displacements during full maxillary arch intrusion using clear aligners and temporary anchorage devices (TADs). METHODS: The maxillary arch and clear aligners were modeled in SolidWorks. Four aligner brands including Leon, Duran, Duran Plus, and Essix Plus were selected based on their material properties. Anterior and posterior intrusion forces of 80 and 300 g were applied from attachments between the canines and first premolars and between the first and second molars, respectively. Vertical and anteroposterior tooth displacements were determined. RESULTS: The greatest intrusion was recorded at the buccal of the second molar, followed by the first molar. The lowest value was measured at the palatal of the molars with all aligners except Duran, which indicated minimal intrusion in the central incisor. All teeth were mesially displaced at the incisal/occlusal except incisors that moved distally. All apices showed distal movement. CONCLUSIONS: Total intrusion using clear aligners may be accompanied by other tooth movements, including buccal tipping and mesial-in rotation of the molars, retrusion of incisors, and mesial movement of other teeth.


Subject(s)
Malocclusion , Orthodontic Appliances, Removable , Humans , Finite Element Analysis , Malocclusion/therapy , Maxilla , Molar , Tooth Movement Techniques/methods
8.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38388173

ABSTRACT

Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.


Subject(s)
Inflammation , Signal Transduction , Mice , Animals , Inflammation/genetics , Signal Transduction/genetics , Phosphoric Monoester Hydrolases/metabolism , Phosphatidylinositols
9.
Methods Mol Biol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38411887

ABSTRACT

A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.

10.
Mycoses ; 67(1): e13686, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38214363

ABSTRACT

BACKGROUND: Otomycosis is an infection of the external auditory canal caused by molds and yeasts with descending frequency. Laboratory diagnosis is usually confirmed by microscopy and culture. However, they are not specific enough to reliably differentiate the causative agents, especially for rare pathogens such as Candida auris. The purpose of the current study was to the molecular screening of C. auris species from direct clinical samples of patients with suspected otomycosis in Southern of Iran. MATERIALS AND METHODS: A total of 221 ear aspirates collected from 221 patients with suspected otomycosis over a four-year period. All the ear aspirations were examined with pan-fungal primers, then those with a positive result was included in two separate reaction mixtures simultaneously to identify the most clinically relevant Aspergillus and Candida species. The validity of positive samples for C. auris was assessed by sequencing. RESULTS: Of the 189 pan-fungal positive PCRs, 78 and 39 specimens contained Aspergillus spp. and Candida spp., respectively. Furthermore, 65 specimens showed simultaneous positive bands in both Candida and Aspergillus species-specific multiplex PCR including five samples/patients with positive result for C. auris (5/189; 2.6%). Four out of five cases with C. auris species-specific PCR were reconfirmed by sequencing, while none were positive for C. auris in culture. CONCLUSION: Unfortunately, due to high treatment failure rates of antifungal classes against C. auris species, rapid and accurate identification of patients colonised with C. auris is critical to overcome the challenge of preventing transmission. This PCR assay can be successfully applied for rapid and accurate detection of C. auris directly in patient samples and is able to differentiate C. auris from closely related Candida species.


Subject(s)
Otomycosis , Humans , Otomycosis/diagnosis , Otomycosis/drug therapy , Otomycosis/microbiology , Candida auris , Multiplex Polymerase Chain Reaction , Iran/epidemiology , Candida/genetics , Aspergillus/genetics , Antifungal Agents/therapeutic use
11.
DNA Cell Biol ; 43(2): 74-84, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38153368

ABSTRACT

The effector proteins of several pathogenic bacteria contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif or other similar motifs. The EPIYA motif is delivered into the host cells by type III and IV secretion systems, through which its tyrosine residue undergoes phosphorylation by host kinases. These motifs atypically interact with a wide range of Src homology 2 (SH2) domain-containing mammalian proteins through tyrosine phosphorylation, which leads to the perturbation of multiple signaling cascades, the spread of infection, and improved bacterial colonization. Interestingly, it has been reported that EPIYA (or EPIYA-like) motifs exist in mammalian proteomes and regulate mammalian cellular-signaling pathways, leading to homeostasis and disease pathophysiology. It is possible that pathogenic bacteria have exploited EPIYA (or EPIYA-like) motifs from mammalian proteins and that the mammalian EPIYA (or EPIYA-like) motifs have evolved to have highly specific interactions with SH2 domain-containing proteins. In this review, we focus on the regulation of mammalian cellular-signaling pathways by mammalian proteins containing these motifs.


Subject(s)
Bacteria , Bacterial Proteins , Animals , Bacterial Proteins/chemistry , Amino Acid Motifs , Phosphorylation , Signal Transduction , Tyrosine/metabolism , Mammals/metabolism
12.
Ultrason Sonochem ; 102: 106726, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113583

ABSTRACT

In this study, the effects of ultrasonicated Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactiplantibacillus plantarum AF1 (100 W, 30 kHz, 3 min) on the safety and bioactive properties of stirred yoghurt during storage (4 °C for 21 days) were investigated. The results showed that sonicated cultures were more effective in reducing pathogens than untreated ones. The highest antioxidant activity (DPPH and ABTS), α-glucosidase and α-amylase inhibition capacity were found in yoghurt containing sonicated probiotic + sonicated yoghurt starter cultures (P + Y + ). The highest amount of peptides (12.4 mg/g) was found in P + Y + yoghurts at the end of the storage time. There were not significant differences between the exopolysaccharide content of P + Y+ (17.30 mg/L) and P + Y- (17.20 mg/L) yoghurts, although it was significantly (P ≤ 0.05) higher than the other samples. The use of ultrasonicated cultures could enhance the safety of stirred yoghurt and improve its functional and bioactive properties.


Subject(s)
Lactobacillus delbrueckii , Lactobacillus plantarum , Lactobacillus delbrueckii/physiology , Streptococcus thermophilus , Yogurt , Fermentation
13.
ACS Omega ; 8(45): 42212-42224, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024677

ABSTRACT

In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 µM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.

14.
ArXiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873017

ABSTRACT

Stroke is a leading cause of mortality and disability. Emergent diagnosis and intervention are critical, and predicated upon initial brain imaging; however, existing clinical imaging modalities are generally costly, immobile, and demand highly specialized operation and interpretation. Low-energy microwaves have been explored as low-cost, small form factor, fast, and safe probes of tissue dielectric properties, with both imaging and diagnostic potential. Nevertheless, challenges inherent to microwave reconstruction have impeded progress, hence microwave imaging (MWI) remains an elusive scientific aim. Herein, we introduce a dedicated experimental framework comprising a robotic navigation system to translate blood-mimicking phantoms within an anatomically realistic human head model. An 8-element ultra-wideband (UWB) array of modified antipodal Vivaldi antennas was developed and driven by a two-port vector network analyzer spanning 0.6-9.0 GHz at an operating power of 1 mw. Complex scattering parameters were measured, and dielectric signatures of hemorrhage were learned using a dedicated deep neural network for prediction of hemorrhage classes and localization. An overall sensitivity and specificity for detection >0.99 was observed, with Rayliegh mean localization error of 1.65 mm. The study establishes the feasibility of a robust experimental model and deep learning solution for UWB microwave stroke detection.

15.
J Indian Soc Periodontol ; 27(5): 471-478, 2023.
Article in English | MEDLINE | ID: mdl-37781337

ABSTRACT

Background: Autogenous soft-tissue graft is the gold-standard approach to augment oral soft tissues. However, tissue engineering is increasingly surveyed to overcome its substantial drawbacks, including the secondary site of operation, patient's pain and discomfort, limited tissue of donor site, and so on. Chitosan and gelatin have been utilized in this field over the years due to their great biological virtues. Zeolite, another remarkable candidate for tissue engineering, possesses outstanding biological and mechanical properties, thanks to its nanostructure. Therefore, this study aimed to investigate the biodegradability and DNA content of seeded human gingival fibroblasts on a New Chitosan-Gelatin-Zeolite Scaffold for the perspective of oral and mucosal soft tissue augmentation. Materials and Methods: DNA contents of the human gingival fibroblast cell line (HGF.1) seeded on the chitosan-gelatin (CG) and CGZ scaffolds were evaluated by propidium iodide staining on days 1, 5, and 8. Scaffolds' biodegradations were investigated on days 1, 7, 14, 28, 42, and 60. Results: Although both scaffolds provided appropriate substrates for HGF.1 growth, significantly higher DNA contents were recorded for the CGZ scaffold. Among experimental groups, the highest mean value was recorded in the CGZ on day 8. CGZ showed a significantly lower biodegradation percentage at all time points. Conclusions: The incorporation of zeolite into the CG scaffold at a ratio of 1:10 improved the cell proliferation and stability of the composite scaffold. CGZ scaffold may offer a promising alternative to soft-tissue grafts due to its suitable biological features.

16.
3 Biotech ; 13(11): 346, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37744286

ABSTRACT

Colon cancer is the fifth leading cause of cancer-related deaths worldwide. Stem cells have unique characteristics and are considered as a novel therapeutic platform for cancer. Sugen Kinase 269 (SgK269) is considered as an oncogenic scaffolding pseudo kinase which governs the rearranging of the cytoskeleton, cellular motility, and invasion. The aim of this study is to evaluate the expression of SgK269 in colon cancer patients and explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) on invasion and proliferation of colon cancer cells (HT-29) through analyzing SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2 signaling pathway. In this regard, we collected 30 samples from colon cancer patients and evaluated SgK269 expression using quantitative real-time PCR (qRT-PCR). Next, we employed a co-culture system using Transwell 6-well plates and after 72 h, tumor growth promotion and invasion were analyzed in hAMSCs-treated HT-29 cells through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway using qRT-PCR, western blot method, MTT assay, wound healing assay, and DAPI staining. Our results showed upregulation of SgK269 in colon cancer patients. Treatment of HT-29 colon cancer cells with hAMSCs secretome can inhibit SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway and the resulting suppression of cell invasion and proliferation. Our results suggest that SgK269 is an important target in colon cancer therapy and MSCs secretome may be an effective therapeutic approach to inhibit colon cancer cell invasion and proliferation through SgK269/c-Src/p-P130Cas/p-Paxillin/p-ERK1/2/Rac signaling pathway.

17.
Int J Hematol Oncol Stem Cell Res ; 17(2): 81-88, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37637767

ABSTRACT

BACKGROUND: FAT atypical cadherin 1 (FAT1) is a member of the cadherin superfamily whose loss or gain is associated with the initiation and/or progression of different cancers. FAT1 overexpression has been reported in hematological malignancies. This research intended to investigate FAT1 gene expression in adult Iranian acute leukemia patients, compared to normal mobilized peripheral blood CD34+ cells. MATERIALS AND METHODS: The peripheral blast (peripheral blood mononuclear cells) cells of 22 acute myeloid leukemia (AML), 14 acute lymphoid leukemia (ALL) patients, and mobilized peripheral blood CD34+ cells of 12 healthy volunteer stem cell donors were collected. Then, quantitative real-time polymerase chain reaction (qPCR) was used to compare FAT1 gene expression. RESULTS: Overall, there were no significant differences in FAT1 expression between AML and ALL patients (p>0.2). Nonetheless, the mean expression level of FAT1 was significantly higher in leukemic patients (AML and ALL) than in normal CD34+ cells (p=0.029). Additionally, the FAT1 expression levels were significantly higher in both CD34+ and CD34- leukemic patients than in normal CD34+ cells (p=0.028). CONCLUSION: No significant differences were found between FAT1 expression in CD34+ and CD34- leukemic samples (p> 0.3). Thus, higher FAT1 expression was evident in ALL and AML leukemia cells but this appeared unrelated to CD34 expression. This suggests in a proportion of adult acute leukemia, FAT1 expression may prove to be a suitable target for therapeutic strategies.

18.
Article in English | MEDLINE | ID: mdl-37649960

ABSTRACT

With the development of novel technologies, radio frequency (RF) energy exposure is expanding at various wavelengths and power levels. These developments necessitate updated approaches of RF measurements in complex environments, particularly in live biological tissue. Accurate dosimetry of the absorbed RF electric fields (E-Fields) by the live tissue is the keystone of environmental health considerations for this type of ever-growing non-ionizing radiation energy. In this study, we introduce a technique for direct in-vivo measurement of electric fields in living tissue. Proof of principle in-vivo electric field measurements were conducted in rodent brains using Bismuth Silicon Oxide (BSO) crystals exposed to varying levels of RF energy. Electric field measurements were calibrated and verified using in-vivo temperature measurements using optical temperature fibers alongside electromagnetic field simulations of a transverse electromagnetic (TEM) cell.

19.
Pharmaceutics ; 15(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514106

ABSTRACT

Doxorubicin is one of the most effective chemotherapeutic agents; however, it has various side effects, such as cardiotoxicity. Therefore, novel methods are needed to reduce its adverse effects. Quercetin is a natural flavonoid with many biological activities. Liposomes are lipid-based carriers widely used in medicine for drug delivery. In this study, liposomal doxorubicin with favorable characteristics was designed and synthesized by the thin-film method, and its physicochemical properties were investigated by different laboratory techniques. Then, the impact of the carrier, empty liposomes, free doxorubicin, liposomal doxorubicin, and quercetin were analyzed in animal models. To evaluate the interventions, measurements of cardiac enzymes, oxidative stress and antioxidant markers, and protein expression were performed, as well as histopathological studies. Additionally, cytotoxicity assay and cellular uptake were carried out on H9c2 cells. The mean size of the designed liposomes was 98.8 nm, and the encapsulation efficiency (EE%) was about 85%. The designed liposomes were anionic and pH-sensitive and had a controlled release pattern with excellent stability. Co-administration of liposomal doxorubicin with free quercetin to rats led to decreased weight loss, creatine kinase (CK-MB), lactate dehydrogenase (LDH), and malondialdehyde (MDA), while it increased the activity of glutathione peroxidase, catalase, and superoxide dismutase enzymes in their left ventricles. Additionally, it changed the expression of NOX1, Rac1, Rac1-GTP, SIRT3, and Bcl-2 proteins, and caused tissue injury and cell cytotoxicity. Our data showed that interventions can increase antioxidant capacity, reduce oxidative stress and apoptosis in heart tissue, and lead to fewer complications. Overall, the use of liposomal doxorubicin alone or the co-administration of free doxorubicin with free quercetin showed promising results.

20.
Tissue Cell ; 84: 102160, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482027

ABSTRACT

One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.


Subject(s)
Mesenchymal Stem Cells , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , AMP-Activated Protein Kinases/metabolism , Up-Regulation , Down-Regulation , Secretome , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Apoptosis , Autophagy/genetics , Mesenchymal Stem Cells/metabolism , Cell Line, Tumor , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...