Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 859(Pt 1): 159575, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36280060

ABSTRACT

The aim of this study was to establish whether SARS-CoV-2 genetic material is detectable after municipal wastewater treatment and to verify its expected removal from purified water that is reclaimed for potable reuse. Viral loads of SARS-CoV-2 (N1 and N2 genes) were monitored in raw influent wastewater (sewage) entering a water reclamation facility and in subsequent advanced treatment. Despite the large viral RNA load in raw sewage during peak COVID-19 outbreaks, substantial amounts of SARS-CoV-2 genetic material were removed during the conventional wastewater treatment process. Further, SARS-CoV-2 genetic material was undetectable after advanced purification. This confirms that potable reuse is resilient against high viral loads which are expected results given the advanced degree of wastewater and water treatment. Findings from this study may enhance public perception of the safety of potable water reuse; however, it should also be noted that studies to date worldwide indicate no evidence of SARS-CoV-2 transmission via water, and the CDC does not consider fecal waste or wastewaters as a source of exposure.


Subject(s)
COVID-19 , Water Purification , Humans , SARS-CoV-2/genetics , Water Purification/methods , Wastewater , Sewage
2.
Water Res ; 217: 118300, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35397369

ABSTRACT

Fouling of microfiltration (MF)) membranes during water/wastewater treatment is predominantly caused by colloidal particles (size <1 µm) in the feed water. Until recently no online technology was available to directly measure the occurrence of colloidal particles in these waters. This study evaluated the viability of a novel online light scattering technology (Nanoparticle Tracking Analysis) to continuously monitor colloidal particles in the membrane feed water (a secondary-treated wastewater) for targeted removal by injecting coagulant at a dosage proportional to the measured concentration of colloidal particles. A diurnal variation was observed in the colloidal particle concentration in the feed water with the lowest concentration occurring at approximately 6 am and the highest concentration occurring after mid-day. The peak colloidal particle concentrations were 4 to 6 times higher than the lowest concentrations measured on the same day. Bench-scale studies were performed to develop a relationship between colloidal particle concentration and the optimum coagulant dosage required for their removal. Subsequently, a pilot-scale study was performed using two MF pilot units operated in parallel, one receiving targeted coagulant dosing and the other with no coagulant dosing, to demonstrate the effectiveness of targeted coagulant dosing in preventing membrane fouling. The pilot unit that received targeted coagulant dose experienced only 4 to 20% of the transmembrane pressure increase of the increase experienced by the pilot unit that received no coagulant. Evaluation of fouling resistance indicated that targeted coagulation improved flux by predominantly lowering the irreversible fouling. The filtrate water quality measured by colloidal particle concentration, chemical oxygen demand (COD), and turbidity were very similar for the two pilot units. This suggests that although the efficiency of particle and organic materials removal does not change with coagulant addition, the particles filtered by the membrane in the control unit contributed to membrane irreversible fouling, while in the coagulant-treated unit, the coagulated colloidal particles were removed away from the membrane into the backwash stream during the frequent backwash/air scour procedures.


Subject(s)
Drinking Water , Water Purification , Membranes, Artificial , Ultrafiltration/methods , Wastewater , Water Purification/methods , Water Quality
3.
J Environ Monit ; 14(1): 79-84, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22048710

ABSTRACT

The dynamic light scattering (DLS) technique can detect the concentration and size distribution of nanoscale particles in aqueous solutions by analyzing photon interactions. This study evaluated the applicability of using photon count rate data from DLS analyses for measuring levels of biogenic and manufactured nanoscale particles in wastewater. Statistical evaluations were performed using secondary wastewater effluent and a Malvern Zetasizer. Dynamic light scattering analyses were performed equally by two analysts over a period of two days using five dilutions and twelve replicates for each dilution. Linearity evaluation using the sixty sample analysis yielded a regression coefficient R(2) = 0.959. The accuracy analysis for various dilutions indicated a recovery of 100 ± 6%. Precision analyses indicated low variance coefficients for the impact of analysts, days, and within sample error. The variation by analysts was apparent only in the most diluted sample (intermediate precision ~12%), where the photon count rate was close to the instrument detection limit. The variation for different days was apparent in the two most concentrated samples, which indicated that wastewater samples must be analyzed for nanoscale particle measurement within the same day of collection. Upon addition of 10 mg l(-1) of nanosilica to wastewater effluent samples, the measured photon count rates were within 5% of the estimated values. The results indicated that photon count rate data can effectively complement various techniques currently available to detect nanoscale particles in wastewaters.


Subject(s)
Environmental Monitoring/statistics & numerical data , Nanoparticles/analysis , Photons , Water Pollutants, Chemical/analysis , Chemistry Techniques, Analytical , Environmental Monitoring/methods , Nanoparticles/chemistry , Particle Size , Photochemical Processes , Silicon Dioxide/analysis , Silicon Dioxide/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...