Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32475837

ABSTRACT

INTRODUCTION: Hyperglycemia in pregnancy (HIP, including gestational diabetes and pre-existing type 1 and type 2 diabetes) is increasing, with associated risks to the health of women and their babies. Strategies to manage and prevent this condition are contested. Dynamic simulation models (DSM) can test policy and program scenarios before implementation in the real world. This paper reports the development and use of an advanced DSM exploring the impact of maternal weight status interventions on incidence of HIP. METHODS: A consortium of experts collaboratively developed a hybrid DSM of HIP, comprising system dynamics, agent-based and discrete event model components. The structure and parameterization drew on a range of evidence and data sources. Scenarios comparing population-level and targeted prevention interventions were simulated from 2018 to identify the intervention combination that would deliver the greatest impact. RESULTS: Population interventions promoting weight loss in early adulthood were found to be effective, reducing the population incidence of HIP by 17.3% by 2030 (baseline ('business as usual' scenario)=16.1%, 95% CI 15.8 to 16.4; population intervention=13.3%, 95% CI 13.0 to 13.6), more than targeted prepregnancy (5.2% reduction; incidence=15.3%, 95% CI 15.0 to 15.6) and interpregnancy (4.2% reduction; incidence=15.5%, 95% CI 15.2 to 15.8) interventions. Combining targeted interventions for high-risk groups with population interventions promoting healthy weight was most effective in reducing HIP incidence (28.8% reduction by 2030; incidence=11.5, 95% CI 11.2 to 11.8). Scenarios exploring the effect of childhood weight status on entry to adulthood demonstrated significant impact in the selected outcome measure for glycemic regulation, insulin sensitivity in the short term and HIP in the long term. DISCUSSION: Population-level weight reduction interventions will be necessary to 'turn the tide' on HIP. Weight reduction interventions targeting high-risk individuals, while beneficial for those individuals, did not significantly impact forecasted HIP incidence rates. The importance of maintaining interventions promoting healthy weight in childhood was demonstrated.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes, Gestational , Hyperglycemia , Insulin Resistance , Adult , Body Weight , Diabetes, Gestational/epidemiology , Diabetes, Gestational/prevention & control , Female , Humans , Hyperglycemia/epidemiology , Hyperglycemia/prevention & control , Pregnancy
2.
JMIR Public Health Surveill ; 5(2): e11615, 2019 May 26.
Article in English | MEDLINE | ID: mdl-31199339

ABSTRACT

BACKGROUND: Although dynamic models are increasingly used by decision makers as a source of insight to guide interventions in order to control communicable disease outbreaks, such models have long suffered from a risk of rapid obsolescence due to failure to keep updated with emerging epidemiological evidence. The application of statistical filtering algorithms to high-velocity data streams has recently demonstrated effectiveness in allowing such models to be automatically regrounded by each new set of incoming observations. The attractiveness of such techniques has been enhanced by the emergence of a new generation of geospatially specific, high-velocity data sources, including daily counts of relevant searches and social media posts. The information available in such electronic data sources complements that of traditional epidemiological data sources. OBJECTIVE: This study aims to evaluate the degree to which the predictive accuracy of pandemic projection models regrounded via machine learning in daily clinical data can be enhanced by extending such methods to leverage daily search counts. METHODS: We combined a previously published influenza A (H1N1) pandemic projection model with the sequential Monte Carlo technique of particle filtering, to reground the model bu using confirmed incident case counts and search volumes. The effectiveness of particle filtering was evaluated using a norm discrepancy metric via predictive and dataset-specific cross-validation. RESULTS: Our results suggested that despite the data quality limitations of daily search volume data, the predictive accuracy of dynamic models can be strongly elevated by inclusion of such data in filtering methods. CONCLUSIONS: The predictive accuracy of dynamic models can be notably enhanced by tapping a readily accessible, publicly available, high-velocity data source. This work highlights a low-cost, low-burden avenue for strengthening model-based outbreak intervention response planning using low-cost public electronic datasets.

3.
BMC Infect Dis ; 17(1): 648, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28950831

ABSTRACT

BACKGROUND: While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. METHODS: Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. RESULTS: We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. CONCLUSION: Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method.


Subject(s)
Disease Outbreaks , Models, Theoretical , Algorithms , Communicable Diseases/epidemiology , Humans
4.
Contemp Oncol (Pozn) ; 17(1): 73-7, 2013.
Article in English | MEDLINE | ID: mdl-23788966

ABSTRACT

Periodic chronic myelogenous leukemia (PCML) is a dynamic hematopoietic disease which causes oscillations of circulating leukocytes, platelets and reticulocytes. Mathematical modeling is an invaluable tool to help in predicting hematopoiesis behavior. In this paper we modify the existing models based on improving the parameters of the model. Also more parameters are estimated regarding the proposed model. It is our major intention to construct a physiological model which can map major identified mechanisms of leukopoiesis to provide a deeper insight into this complex biological process. In the proposed model the leukocytes line has been modeled more precisely. In fact, precursor cells have been considered as two separate groups: proliferating precursor cells and non-proliferating precursor cells. As a result, more parameters have appeared in the model and identifying the new parameters has resulted in a better fit of clinical data and the data extracted from the model for both platelets and leukocytes. That is, the new model describes the leukocytes and platelets of the system in a way that is closer to clinical data, so the proposed model can be more useful for predicting the behavior of leukocytes and platelets for PCML disease. Compared with the previous works, it is shown that the new model has a better fit of the quantitative data on leukocytes and platelets.

SELECTION OF CITATIONS
SEARCH DETAIL
...