Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Macromol Biosci ; 24(3): e2300065, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37846197

ABSTRACT

A 3D-printed biodegradable hydrogel, consisting of alginate, gelatin, and freeze-dried bone allograft nanoparticles (npFDBA), is developed as a scaffold for enhancing cell adhesion, proliferation, and osteogenic differentiation when combined with rat bone marrow mesenchymal stem cells (rBMSCs). This composite hydrogel is intended for the regeneration of critical-sized bone defects using a rat calvaria defect model. The behavior of rBMSCs seeded onto the scaffold is evaluated through scanning electron microscope, MTT assays, and quantitative real-time PCR. In a randomized study, thirty rats are assigned to five treatment groups: 1) rBMSCs-loaded hydrogel, 2) rBMSCs-loaded FDBA microparticles, 3) hydrogel alone, 4) FDBA alone, and 5) an empty defect serving as a negative control. After 8 weeks, bone regeneration is assessed using H&E, Masson's trichrome staining, and immunohistochemistry. The 3D-printed hydrogel displays excellent adhesion, proliferation, and differentiation of rBMSCs. The rBMSCs-loaded hydrogel exhibits comparable new bone regeneration to the rBMSCs-loaded FDBA group, outperforming other groups with statistical significance (P-value < 0.05). These findings are corroborated by Masson's trichrome staining and osteocalcin expression. The rBMSCs-loaded 3D-printed hydrogel demonstrates promising potential for significantly enhancing bone regeneration, surpassing the conventional clinical approach (FDBA).


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Rats , Animals , Gelatin/pharmacology , Hydrogels/pharmacology , Hydrogels/metabolism , Tissue Scaffolds , Alginates/pharmacology , Bone Marrow , Bone Regeneration , Cell Differentiation , Printing, Three-Dimensional , Tissue Engineering
2.
J Inorg Biochem ; 246: 112272, 2023 09.
Article in English | MEDLINE | ID: mdl-37339572

ABSTRACT

The reactions of [Fe2(CO)6(µ-sdt)] (1) (sdt = SCH2SCH2S) with phosphine ligands have been investigated. Treatment of 1 with dppm (bis(diphenylphosphino)methane) or dcpm (bis(dicyclohexylphosphino)methane) affords the diphosphine-bridged products [Fe2(CO)4(µ-sdt)(µ-dppm)] (2) and [Fe2(CO)4(µ-sdt)(µ-dcpm)] (3), respectively. The complex [Fe2(CO)4(µ-sdt)(κ2-dppv)] (4) with a chelating diphosphine was obtained by reacting 1 with dppv (cis-1,2-bis(diphenylphosphino)ethene). Reaction of 1 with dppe (1,2-bis(diphenylphosphino)ethane) produces [{Fe2(CO)4(µ-sdt)}2(µ-κ1-dppe)] (5) in which the diphosphine forms an intermolecular bridge between two diiron cluster fragments. Three products were obtained when dppf (1,1'-bis(diphenylphosphino)ferrocene) was introduced to complex 1; they were [Fe2(CO)5(µ-sdt)(κ1-dppfO)] (6), the previously known [{Fe2(CO)5(µ-sdt)}2(µ-κ1-κ1-dppf)] (7), and [Fe2(CO)4(µ-sdt)(µ-dppf)] (8), with complex 8 being produced in highest yield. Single crystal X-ray diffraction analysis was performed on compounds 2, 3 and 8. All structures reveal the adoption of an anti-arrangement of the dithiolate bridges, while the diphosphines occupy dibasal positions. Infra-red spectroscopy indicates that the mono-substituted complexes 5, 6, and 7 are inert to protonation by HBF4.Et2O, but complexes 2, 3, 4 and [Fe2(CO)5(µ-sdt)(κ1-PPh3)] (9) show shifts of their ν(C-O) resonances that indicate that protons bind to the metal cores of the clusters. Addition of the one-electron oxidant [Cp2Fe]PF6 does not lead to any discernable shift in the IR resonances. The redox chemistry of the complexes was investigated by cyclic voltammetry, and the abilities of complexes to catalyze electrochemical proton reduction were examined.


Subject(s)
Iron-Sulfur Proteins , Protons , Iron-Sulfur Proteins/chemistry , Methane
3.
Environ Technol ; 39(4): 479-489, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28270057

ABSTRACT

Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m3). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m3. In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.


Subject(s)
Air Pollutants/analysis , Methane/analysis , Waste Disposal, Fluid/methods , Anaerobiosis , Animals , Biological Oxygen Demand Analysis , Electricity , Manure , Sus scrofa , Swine
4.
Waste Manag ; 66: 61-69, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28285733

ABSTRACT

An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal.


Subject(s)
Bioreactors , Methane , Biological Oxygen Demand Analysis , Electroporation , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL