Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902293

ABSTRACT

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Subject(s)
Vacuolar Proton-Translocating ATPases , Animals , Humans , HEK293 Cells , Vacuolar Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/metabolism , Protein Isoforms/metabolism , Cell Membrane/metabolism , Phosphatidylinositols/metabolism , Binding Sites , Mammals/metabolism
2.
J Biol Chem ; 298(8): 102187, 2022 08.
Article in English | MEDLINE | ID: mdl-35760104

ABSTRACT

Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.


Subject(s)
Fibroblasts , Phosphatidylinositol 3-Kinases , Phosphoric Monoester Hydrolases/metabolism , Animals , Class III Phosphatidylinositol 3-Kinases/metabolism , Fibroblasts/metabolism , Lysosomes/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Phosphoric Monoester Hydrolases/genetics
3.
PLoS One ; 16(11): e0259313, 2021.
Article in English | MEDLINE | ID: mdl-34813622

ABSTRACT

Lysosomes are terminal, degradative organelles of the endosomal pathway that undergo repeated fusion-fission cycles with themselves, endosomes, phagosomes, and autophagosomes. Lysosome number and size depends on balanced fusion and fission rates. Thus, conditions that favour fusion over fission can reduce lysosome numbers while enlarging their size. Conversely, favouring fission over fusion may cause lysosome fragmentation and increase their numbers. PIKfyve is a phosphoinositide kinase that generates phosphatidylinositol-3,5-bisphosphate to modulate lysosomal functions. PIKfyve inhibition causes an increase in lysosome size and reduction in lysosome number, consistent with lysosome coalescence. This is thought to proceed through reduced lysosome reformation and/or fission after fusion with endosomes or other lysosomes. Previously, we observed that photo-damage during live-cell imaging prevented lysosome coalescence during PIKfyve inhibition. Thus, we postulated that lysosome fusion and/or fission dynamics are affected by reactive oxygen species (ROS). Here, we show that ROS generated by various independent mechanisms all impaired lysosome coalescence during PIKfyve inhibition and promoted lysosome fragmentation during PIKfyve re-activation. However, depending on the ROS species or mode of production, lysosome dynamics were affected distinctly. H2O2 impaired lysosome motility and reduced lysosome fusion with phagosomes, suggesting that H2O2 reduces lysosome fusogenecity. In comparison, inhibitors of oxidative phosphorylation, thiol groups, glutathione, or thioredoxin, did not impair lysosome motility but instead promoted clearance of actin puncta on lysosomes formed during PIKfyve inhibition. Additionally, actin depolymerizing agents prevented lysosome coalescence during PIKfyve inhibition. Thus, we discovered that ROS can generally prevent lysosome coalescence during PIKfyve inhibition using distinct mechanisms depending on the type of ROS.


Subject(s)
Reactive Oxygen Species , Autophagosomes/metabolism , Hydrogen Peroxide , Lysosomes , Phosphatidylinositol Phosphates/metabolism , Phosphatidylinositols/metabolism
4.
Trends Cell Biol ; 29(8): 635-646, 2019 08.
Article in English | MEDLINE | ID: mdl-31171420

ABSTRACT

Lysosomes are acidic and degradative organelles that receive and digest a plethora of molecular and particulate cargo delivered by endocytosis, autophagy, and phagocytosis. The mechanisms responsible for sorting, transporting, and ultimately delivering membranes and cargo to lysosomes through fusion have been intensely investigated. Much less is understood about lysosome fission, which is necessary to balance the incessant flow of cargo into lysosomes and maintain steady-state number, size, and function of lysosomes. Here, we review the emerging picture of how lipid signals, coat and adaptor proteins, and motor-cytoskeletal assemblies drive budding, tubulation, splitting, and 'kiss-and-run' events that enable fission and exit from lysosomes and related organelles.


Subject(s)
Lysosomes/metabolism , Animals , Humans
5.
Curr Alzheimer Res ; 15(7): 618-627, 2018.
Article in English | MEDLINE | ID: mdl-29332578

ABSTRACT

BACKGROUND: PDGFß receptors and their ligand, PDGF-BB, are upregulated in vivo after neuronal insults such as ischemia. When applied exogenously, PDGF-BB is neuroprotective against excitotoxicity and HIV proteins. OBJECTIVE: Given this growth factor's neuroprotective ability, we sought to determine if PDGF-BB would be neuroprotective against amyloid-ß (1-42), one of the pathological agents associated with Alzheimer's disease (AD). METHODS AND RESULTS: In both primary hippocampal neurons and the human-derived neuroblastoma cell line, SH-SY5Y, amyloid-ß treatment for 24 h decreased surviving cell number in a concentrationdependent manner. Pretreatment with PDGF-BB failed to provide any neuroprotection against amyloid-ß in primary neurons and only very limited protective effects in SH-SY5Y cells. In addition to its neuroprotective action, PDGF promotes cell growth and division in several systems, and the application of PDGFBB alone to serum-starved SH-SY5Y cells resulted in an increase in cell number. Amyloid-ß attenuated the mitogenic effects of PDGF-BB, inhibited PDGF-BB-induced PDGFß receptor phosphorylation, and attenuated the ability of PDGF-BB to protect neurons against NMDA-induced excitotoxicity. Despite the ability of amyloid-ß to inhibit PDGFß receptor activation, immunoprecipitation experiments failed to detect a physical interaction between amyloid-ß and PDGF-BB or the PDGFß receptor. However, G protein-coupled receptor transactivation of the PDGFß receptor (an exclusively intracellular signaling pathway) remained unaffected by the presence of amyloid-ß. CONCLUSIONS: As the PDGF system is upregulated upon neuronal damage, the ability of amyloid-ß to inhibit this endogenous neuroprotective system should be further investigated in the context of AD pathophysiology.


Subject(s)
Amyloid beta-Peptides/metabolism , Becaplermin/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Peptide Fragments/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Hippocampus/metabolism , Humans , Mice , Neurons/metabolism , Neuroprotection/drug effects , Neuroprotection/physiology , Phosphorylation/drug effects , Primary Cell Culture , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...