Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 33(5): e2888, 2023 07.
Article in English | MEDLINE | ID: mdl-37212209

ABSTRACT

Wildfires may facilitate climate tracking of forest species moving upslope or north in latitude. For subalpine tree species, for which higher elevation habitat is limited, accelerated replacement by lower elevation montane tree species following fire may hasten extinction risk. We used a dataset of postfire tree regeneration spanning a broad geographic range to ask whether the fire facilitated upslope movement of montane tree species at the montane-to-subalpine ecotone. We sampled tree seedling occurrence in 248 plots across a fire severity gradient (unburned to >90% basal area mortality) and spanning ~500 km of latitude in Mediterranean-type subalpine forest in California, USA. We used logistic regression to quantify differences in postfire regeneration between resident subalpine species and the seedling-only range (interpreted as climate-induced range extension) of montane species. We tested our assumption of increasing climatic suitability for montane species in subalpine forest using the predicted difference in habitat suitability at study plots between 1990 and 2030. We found that postfire regeneration of resident subalpine species was uncorrelated or weakly positively correlated with fire severity. Regeneration of montane species, however, was roughly four times greater in unburned relative to burned subalpine forest. Although our overall results contrast with theoretical predictions of disturbance-facilitated range shifts, we found opposing postfire regeneration responses for montane species with distinct regeneration niches. Recruitment of shade-tolerant red fir declined with fire severity and recruitment of shade-intolerant Jeffrey pine increased with fire severity. Predicted climatic suitability increased by 5% for red fir and 34% for Jeffrey pine. Differing postfire responses in newly climatically available habitats indicate that wildfire disturbance may only facilitate range extensions for species whose preferred regeneration conditions align with increased light and/or other postfire landscape characteristics.


Subject(s)
Pinus , Wildfires , Ecosystem , Fires , Forests , Seedlings , Trees
2.
Ecol Appl ; 32(8): e2711, 2022 12.
Article in English | MEDLINE | ID: mdl-36161678

ABSTRACT

Forests currently face numerous stressors, raising questions about processes of forest recovery as well as the role of humans in stimulating recovery by planting trees that might not otherwise regenerate. Theoretically, planted trees can also provide a seed source for further recruitment once the planted trees become reproductive, acting as "nucleation" sites; however, it is unclear whether changing site conditions over time (e.g., through the growth of competitors like woody shrubs) influences establishment in the long term, even if seed availability increases. We tested the nucleation concept in a system where shrub competition is known to influence tree establishment and growth, performing an observational study of sites within and close to newly reproductive planted stands in yellow-pine (YP) and mixed-conifer ecosystems in the Sierra Nevada, California. We surveyed and then modeled both seedling occurrence and density as a function of distance to seed sources, competing woody vegetation, and other environmental characteristics. We found that proximity to a planted stand was associated with an increase in the probability of YP seedlings (species more likely to originate from the planted stand) from 0.33 at 35 m from the planted stand to 0.56 directly adjacent to the stand and 0.65 within the stand. However, we found no significant effect of proximity on YP seedling density. This proximity effect suggests that seed availability continues to be a driver of recruitment several decades postwildfire, though other processes may influence the expected density of recruits. Proxies for competitive pressure (shrub volume and shrub cover) were not significant, suggesting that competing vegetation did not have a major influence on recruitment. Though seedling presence and density appeared to be independent of shrub impacts, we did find that shrubs were significantly taller than seedlings. Therefore, we suggest that shrubs may not limit seedling establishment, but they may negatively affect seedlings' ability to grow and serve as a seed source for further recruitment and forest expansion. Altogether, we find that planting may provide a statistically significant but small role in driving recruitment outside of the planted site.


Subject(s)
Ecosystem , Tracheophyta , Humans , Forests , Seedlings , Seeds
3.
Ecol Appl ; 32(1): e02464, 2022 01.
Article in English | MEDLINE | ID: mdl-34614281

ABSTRACT

Extreme drought and increasing temperatures can decrease the resilience of plant communities to fires. Not only may extremely dry conditions during or after fires lead to higher plant mortality and poorer recruitment, but severe pre-fire droughts may reduce the seed production and belowground vigor that are essential to post-fire plant recovery, and may indirectly facilitate invasion. We studied survival, recruitment, and growth of shrubs and herbs in chaparral (shrubland) communities in Northern California after a 2015 fire that immediately followed California's extreme 3-yr drought. We followed the same protocols used to study similar, adjacent communities after a 1999 fire that did not follow a drought, and we compared the two recovery trajectories. Overall, the 2015 fire was not more severe than the 1999 fire, yet it caused higher mortality and lower growth of resprouting shrubs on fertile (sandstone) soils. In contrast, the 2015 fire did not affect the mortality or growth of resprouting shrubs on infertile (serpentine) soils, the density of shrub seedlings, or the richness or cover of native herbs differently than the 1999 fire. However, the 2015 fire facilitated a massive increase in exotic herbaceous cover, especially on fertile soils, possibly portending the early stages of a type conversion to exotic-dominated grassland. Our findings indicate that the consequences of climate change on fire-dependent communities will include effects of pre-fire as well as post-fire climate, and that resprouting shrubs are particularly likely to be sensitive to pre-fire drought.


Subject(s)
Droughts , Soil , Climate Change , Ecosystem , Plants
4.
Ecol Appl ; 31(8): e02433, 2021 12.
Article in English | MEDLINE | ID: mdl-34339088

ABSTRACT

We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include the following: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great? Can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? And (10) is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep pace with changing climatic and wildfire regimes and declining forest heterogeneity after severe wildfires. Science-based adaptation options include the use of managed wildfire, prescribed burning, and coupled mechanical thinning and prescribed burning as is consistent with land management allocations and forest conditions. Although some current models of fire management in wNA are averse to short-term risks and uncertainties, the long-term environmental, social, and cultural consequences of wildfire management primarily grounded in fire suppression are well documented, highlighting an urgency to invest in intentional forest management and restoration of active fire regimes.


Subject(s)
Fires , Wildfires , Climate Change , Forests , North America
5.
Ecology ; 102(11): e03514, 2021 11.
Article in English | MEDLINE | ID: mdl-34363692

ABSTRACT

High severity fire may promote or reduce plant understory diversity in forests. However, few empirical studies have tested long-standing theoretical predictions that productivity may help to explain observed variation in post-fire plant diversity. Support for the influence of productivity on disturbance-diversity relationships is found predominantly in experimental grasslands, while tests over large areas with natural disturbance and productivity gradients are few and have yielded inconsistent results. Here, we measured the response of post-fire understory plant diversity to natural gradients of fire severity and productivity in a large-scale observational study in California's subalpine forests. We found that plant species richness increased with increasing fire severity and that this trend was stronger at high productivity. We used plant traits to investigate whether release from competition might contribute to increasing diversity and found that short-lived and far-dispersing species benefited more from high severity fire than their long-lived and near-dispersing counterparts. For far-dispersing species only, the benefit from high severity fire was stronger in high productivity plots where unburned species richness was lowest. Our results support theoretical connections between fire severity, productivity and plant communities that are key to predicting the consequences of increasing fire severity and frequency on diversity in the coming decades.


Subject(s)
Biodiversity , Fires , Ecosystem , Forests , Plants
6.
Ecol Appl ; 31(3): e02287, 2021 04.
Article in English | MEDLINE | ID: mdl-33426715

ABSTRACT

In temperate forests, elevated frequency of drought related disturbances will likely increase the incidence of interactions between disturbances such as bark beetle epidemics and wildfires. Our understanding of the influence of recent drought and insect-induced tree mortality on wildfire severity has largely lacked information from forests adapted to frequent fire. A recent unprecedented tree mortality event in California's Sierra Nevada provides an opportunity to examine this disturbance interaction in historically frequent-fire forests. Using field data collected within areas of recent tree mortality that subsequently burned in wildfire, we examined whether and under what conditions wildfire severity relates to severity of prefire tree mortality in Sierra Nevada mixed-conifer forests. We collected data on 180 plots within the 2015 Rough Fire and 2016 Cedar Fire footprints (California, USA). Our analyses identified prefire tree mortality as influential on all measures of wildfire severity (basal area killed by fire, RdNBR, and canopy torch) on the Cedar Fire, although it was less influential than fire weather (relative humidity). Prefire tree mortality was influential on two of three fire-severity measures on the Rough Fire, and was the most important predictor of basal area killed by fire; topographic position was influential on two metrics. On the Cedar Fire, the influence of prefire mortality on basal area killed by fire was greater under milder weather conditions. All measures of fire severity increased as prefire mortality increased up to prefire mortality levels of approximately 30-40%; further increases did not result in greater fire severity. The interacting disturbances shifted a pine-dominated system (Rough Fire) to a cedar-pine-fir system, while the pre-disturbance fir-cedar system (Cedar Fire) saw its dominant species unchanged. Managers of historically frequent-fire forests will benefit from utilizing this information when prioritizing fuels reduction treatments in areas of recent tree mortality, as it is the first empirical study to document a relationship between prefire mortality and subsequent wildfire severity in these systems. This study contributes to a growing body of evidence that the influence of prefire tree mortality on wildfire severity in temperate coniferous forests may depend on other conditions capable of driving extreme wildfire behavior, such as weather.


Subject(s)
Coleoptera , Fires , Tracheophyta , Wildfires , Animals , California , Disease Outbreaks , Forests , Plant Bark , Trees
7.
Ecol Appl ; 31(3): e02280, 2021 04.
Article in English | MEDLINE | ID: mdl-33331069

ABSTRACT

Large, severe fires are becoming more frequent in many forest types across the western United States and have resulted in tree mortality across tens of thousands of hectares. Conifer regeneration in these areas is limited because seeds must travel long distances to reach the interior of large burned patches and establishment is jeopardized by increasingly hot and dry conditions. To better inform postfire management in low elevation forests of California, USA, we collected 5-yr postfire recovery data from 1,234 study plots in 19 wildfires that burned from 2004-2012 and 18 yrs of seed production data from 216 seed fall traps (1999-2017). We used these data in conjunction with spatially extensive climate, topography, forest composition, and burn severity surfaces to construct taxon-specific, spatially explicit models of conifer regeneration that incorporate climate conditions and seed availability during postfire recovery windows. We found that after accounting for other predictors both postfire and historical precipitation were strong predictors of regeneration, suggesting that both direct effects of postfire moisture conditions and biological inertia from historical climate may play a role in regeneration. Alternatively, postfire regeneration may simply be driven by postfire climate and apparent relationships with historical climate could be spurious. The estimated sensitivity of regeneration to postfire seed availability was strongest in firs and all conifers combined and weaker in pines. Seed production exhibited high temporal variability with seed production varying by over two orders of magnitude among years. Our models indicate that during droughts postfire conifer regeneration declines most substantially in low-to-moderate elevation forests. These findings enhance our mechanistic understanding of forecasted and historically documented shifts in the distribution of trees.


Subject(s)
Fires , Tracheophyta , Wildfires , Climate , Ecosystem , Forests , Seeds , Trees
9.
Ecol Appl ; 30(4): e02072, 2020 06.
Article in English | MEDLINE | ID: mdl-31925848

ABSTRACT

During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.


Subject(s)
Tracheophyta , Wildfires , Carbon , Ecosystem , Forests , Soil
10.
Ecol Appl ; 30(1): e02002, 2020 01.
Article in English | MEDLINE | ID: mdl-31519065

ABSTRACT

Rising temperatures and more frequent and severe droughts are driving increases in tree mortality in forests around the globe. However, in many cases, the likely trajectories of forest recovery following drought-related mortality are poorly understood. In many fire-suppressed western U.S. forests, management is applied to reverse densification and restore natural forest structure and species composition, but it is unclear how such management affects post-mortality recovery. We addressed these uncertainties by examining forest stands that experienced mortality during the severe drought of 2012-2016 in California, USA. We surveyed post-drought vegetation along a gradient of overstory mortality severity in paired treated (mechanically thinned or prescribed-burned) and untreated areas in the Sierra Nevada. Treatment substantially reduced tree density, particularly in smaller tree size classes, and these effects persisted through severe drought-related overstory mortality. However, even in treated areas with severe mortality (>67% basal area mortality), the combined density of residual (surviving) trees (mean 44 trees/ha) and saplings (mean 189 saplings/ha) frequently (86% of plots) fell within or exceeded the natural range of variation (NRV) of tree density, suggesting little need for reforestation intervention to increase density. Residual tree densities in untreated high-mortality plots were significantly higher (mean 192 trees/ha and 506 saplings/ha), and 96% of these plots met or exceeded the NRV. Treatment disproportionately removed shade-tolerant conifer species, while mortality in the drought event was concentrated in pines (Pinus ponderosa and P. lambertiana); as a consequence, the residual trees, saplings, and seedlings in treated areas, particularly those that had experienced moderate or high drought-related mortality, were more heavily dominated by broadleaf ("hardwood") trees (particularly Quercus kelloggii and Q. chrysolepis). In contrast, residual trees and regeneration in untreated stands were heavily dominated by shade-tolerant conifer species (Abies concolor and Calocedrus decurrens), suggesting a need for future treatment. Because increased dominance of hardwoods brings benefits for plant and animal diversity and stand resilience, the ecological advantages of mechanical thinning and prescribed fire treatments may, depending on the management perspective, extend even to stands that ultimately experience high drought-related mortality following treatment.


Subject(s)
Droughts , Fires , Animals , California , Forests , Trees
11.
Oecologia ; 191(4): 731-743, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31701232

ABSTRACT

The persistence and distribution of species under changing climates can be affected by both direct effects of the environment and indirect effects via biotic interactions. However, the relative importance of direct and indirect climate effects on recruitment stages is poorly understood. We conducted a manipulative experiment to test the multiway interaction of direct and competition-mediated effects of climate change on vegetation dynamics. Following stand-replacing fire in California mixed-conifer forest, we seeded two conifer species, Pinus ponderosa and Abies concolor, in two consecutive years, one relatively normal and the other with an unusually wet and snowy winter followed by a hot summer. We additionally manipulated snow amount and competitive environment for both years. We found the effects of the snowpack treatment were contingent upon other abiotic factors (year of seeding) and biotic factors (shrub competition). Under ambient snowpack, shrubs reduced recruitment of P. ponderosa seedlings, but this negative effect disappeared with reduced snowpack. Additionally, the effects of shrubs on seedlings differed between cohorts and by life stage. In a warmer future, decreased snowpack may increase seedling emergence, but hotter and drier summers will decrease seedling survival; the effects of shrubs on conifers may become less negative as temperatures increase.


Subject(s)
Tracheophyta , California , Climate Change , Forests , Seedlings , Temperature
13.
Ecology ; 100(2): e02571, 2019 02.
Article in English | MEDLINE | ID: mdl-30516290

ABSTRACT

Disturbance such as wildfire may create opportunities for plant communities to reorganize in response to climate change. The interaction between climate change and disturbance may be particularly important in forests, where many of the foundational plant species (trees) are long-lived and where poor initial tree establishment can result in conversion to shrub- or graminoid-dominated systems. The response of post-disturbance vegetation establishment to post-disturbance weather conditions, particularly to extreme weather, could therefore provide useful information about how forest communities will respond to climate change. We examined the effect of post-fire weather conditions on post-fire tree, shrub, and graminoid recruitment in fire-adapted forests in northern California, USA, by surveying regenerating vegetation in severely burned areas 4-5 yr after 14 different wildfires that burned between 2004 and 2012. This time period (2004-2016) encompassed a wide range of post-fire weather conditions, including a period of extreme drought. For the most common tree species, we observed little evidence of disturbance-mediated community reorganization or range shifts but instead either (1) low sensitivity of recruitment to post-fire weather or (2) weak but widespread decreases in recruitment under unusually dry post-fire conditions, depending on the species. The occurrence of a single strong drought year following fire was more important than a series of moderately dry years in explaining tree recruitment declines. Overall, however, post-fire tree recruitment patterns were explained more strongly by long-term climate and topography and local adult tree species abundance than by post-fire weather conditions. This observation suggests that surviving adult trees can contribute to a "biological inertia" that restricts the extent to which tree community composition will track changes in climate through post-disturbance recruitment. In contrast to our observations in trees, we observed substantial increases in shrub and graminoid establishment under post-fire drought, suggesting that shifts in dominance between functional groups may become more likely in a future with more frequent and intense drought.


Subject(s)
Droughts , Fires , California , Climate Change , Forests , Trees
14.
Glob Chang Biol ; 24(10): 4909-4918, 2018 10.
Article in English | MEDLINE | ID: mdl-30091212

ABSTRACT

Many global ecosystems have undergone shifts in fire regimes in recent decades, such as changes in fire size, frequency, and/or severity. Recent research shows that increases in fire size, frequency, and severity can lead to long-persisting deforestation, but the consequences of shifting fire regimes for biodiversity of other vegetative organisms (such as understory plants, fungi, and lichens) remain poorly understood. Understanding lichen responses to wildfire is particularly important because lichens play crucial roles in nutrient cycling and supporting wildlife in many ecosystems. Lichen responses to fire have been little studied, and most previous research has been limited to small geographic areas (e.g. studies of a single fire), making it difficult to establish generalizable patterns. To investigate long-term effects of fire severity on lichen communities, we sampled epiphytic lichen communities in 104 study plots across California's greater Sierra Nevada region in areas that burned in five wildfires, ranging from 4 to 16 years prior to sampling. The conifer forest ecosystems we studied have undergone a notable increase in fire severity in recent decades, and we sample across the full gradient of fire severity to infer how shifting fire regimes may influence landscape-level biodiversity. We find that low-severity fire has little to no effect on lichen communities. Areas that burned at moderate and high severities, however, have significantly and progressively lower lichen richness and abundance. Importantly, we observe very little postfire lichen recolonization on burned substrates even more than 15 years after fire. Our multivariate model suggests that the hotter, drier microclimates that occur after fire removes forest canopies may prevent lichen reestablishment, meaning that lichens are not likely to recolonize until mature trees regenerate. These findings suggest that altered fire regimes may cause broad and long-persisting landscape-scale biodiversity losses that could ultimately impact multiple trophic levels.


Subject(s)
Biodiversity , Fires , Forests , Lichens/classification , California , Conservation of Natural Resources , Environmental Monitoring , Lichens/growth & development , Models, Theoretical , Tracheophyta/growth & development , Trees/growth & development
15.
Ecol Appl ; 28(6): 1626-1639, 2018 09.
Article in English | MEDLINE | ID: mdl-29809291

ABSTRACT

Shifting disturbance regimes can have cascading effects on many ecosystems processes. This is particularly true when the scale of the disturbance no longer matches the regeneration strategy of the dominant vegetation. In the yellow pine and mixed conifer forests of California, over a century of fire exclusion and the warming climate are increasing the incidence and extent of stand-replacing wildfire; such changes in severity patterns are altering regeneration dynamics by dramatically increasing the distance from live tree seed sources. This has raised concerns about limitations to natural reforestation and the potential for conversion to non-forested vegetation types, which in turn has implications for shifts in many ecological processes and ecosystem services. We used a California region-wide data set with 1,848 plots across 24 wildfires in yellow pine and mixed conifer forests to build a spatially explicit habitat suitability model for forecasting postfire forest regeneration. To model the effect of seed availability, the critical initial biological filter for regeneration, we used a novel approach to predicting spatial patterns of seed availability by estimating annual seed production from existing basal area and burn severity maps. The probability of observing any conifer seedling in a 60-m2 area (the field plot scale) was highly dependent on 30-yr average annual precipitation, burn severity, and seed availability. We then used this model to predict regeneration probabilities across the entire extent of a "new" fire (the 2014 King Fire), which highlights the spatial variability inherent in postfire regeneration patterns. Such forecasts of postfire regeneration patterns are of importance to land managers and conservationists interested in maintaining forest cover on the landscape. Our tool can also help anticipate shifts in ecosystem properties, supporting researchers interested in investigating questions surrounding alternative stable states, and the interaction of altered disturbance regimes and the changing climate.


Subject(s)
Ecology/methods , Forests , Models, Theoretical , Spatial Analysis , California , Forecasting , Wildfires
16.
Ecol Appl ; 27(5): 1498-1513, 2017 07.
Article in English | MEDLINE | ID: mdl-28370925

ABSTRACT

Historical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches. Area-based approaches have been applied in California mixed-conifer forests but their estimates have not been validated. To assess the accuracy and precision of plotless density estimators with potential for application to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands of known densities (159-784 trees/ha) in the Sierra Nevada in California, USA, and Baja California Norte, Mexico. We compared three distance-based plotless density estimators (Cottam, Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delincé and mean harmonic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of increasing intensity to assess sampling error. The relative error (RE) of density estimates for the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density in every stand was obtained with the Morisita estimator and the most biased was obtained with the MHVD estimator. The MHVD estimates of tree density were 1.2-3.8 times larger than the true densities and performed best in stands subject to fire exclusion for 100 yr. The Delincé approach obtained accurate estimates of density, implying that the Voronoi approach is theoretically sound but that its application in the MHVD was flawed. The misapplication was attributed to two causes: (1) the use of a crown scaling factor that does not correct for the number of trees sampled and (2) the persistent underestimate of the true VA due to a weak relationship between tree size and VA. The magnitude of differences between true densities and MHVD estimates suggest caution in using results based on the MHVD to inform management and restoration practices in the conifer forests of the American West.


Subject(s)
Forestry/methods , Forests , Trees/physiology , California , Mexico , Models, Biological , Models, Statistical , Population Density
17.
PLoS One ; 11(5): e0147688, 2016.
Article in English | MEDLINE | ID: mdl-27196621

ABSTRACT

Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.


Subject(s)
Fires , Forests , Pinus ponderosa , Tracheophyta , North America
18.
Ecol Appl ; 24(5): 1057-69, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25154096

ABSTRACT

Correlative species distribution models (SDMs) are widely used in studies of climate change impacts, yet are often criticized for failing to incorporate disturbance processes that can influence species distributions. Here we use two temporally independent data sets of vascular plant distributions, climate data, and fire atlas data to examine the influence of disturbance history on SDM projection accuracy through time in the mountain ranges of California, USA. We used hierarchical partitioning to examine the influence of fire occurrence on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the inclusion of fire-related predictors (fire occurrence and departure from historical fire return intervals) affects SDM projection accuracy. Fire occurrence provided the least explanatory power among predictor variables for predicting species' distributions, but provided improved explanatory power for species whose regeneration is tied closely to fire. A measure of the departure from historic fire return interval had greater explanatory power for calibrating modern SDMs than fire occurrence. This variable did not improve internal model accuracy for most species, although it did provide marginal improvement to models for species adapted to high-frequency fire regimes. Fire occurrence and fire return interval departure were strongly related to the climatic covariates used in SDM development, suggesting that improvements in model accuracy may not be expected due to limited additional explanatory power. Our results suggest that the inclusion of coarse-scale measures of disturbance in SDMs may not be necessary to predict species distributions under climate change, particularly for disturbance processes that are largely mediated by climate.


Subject(s)
Climate Change , Fires , California , Forecasting
19.
Carbon Balance Manag ; 7(1): 7, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22741762

ABSTRACT

BACKGROUND: Forest fuel treatments have been proposed as tools to stabilize carbon stocks in fire-prone forests in the Western U.S.A. Although fuel treatments such as thinning and burning are known to immediately reduce forest carbon stocks, there are suggestions that these losses may be paid back over the long-term if treatments sufficiently reduce future wildfire severity, or prevent deforestation. Although fire severity and post-fire tree regeneration have been indicated as important influences on long-term carbon dynamics, it remains unclear how natural variability in these processes might affect the ability of fuel treatments to protect forest carbon resources. We surveyed a wildfire where fuel treatments were put in place before fire and estimated the short-term impact of treatment and wildfire on aboveground carbon stocks at our study site. We then used a common vegetation growth simulator in conjunction with sensitivity analysis techniques to assess how predicted timescales of carbon recovery after fire are sensitive to variation in rates of fire-related tree mortality, and post-fire tree regeneration. RESULTS: We found that fuel reduction treatments were successful at ameliorating fire severity at our study site by removing an estimated 36% of aboveground biomass. Treated and untreated stands stored similar amounts of carbon three years after wildfire, but differences in fire severity were such that untreated stands maintained only 7% of aboveground carbon as live trees, versus 51% in treated stands. Over the long-term, our simulations suggest that treated stands in our study area will recover baseline carbon storage 10-35 years more quickly than untreated stands. Our sensitivity analysis found that rates of fire-related tree mortality strongly influence estimates of post-fire carbon recovery. Rates of regeneration were less influential on recovery timing, except when fire severity was high. CONCLUSIONS: Our ability to predict the response of forest carbon resources to anthropogenic and natural disturbances requires models that incorporate uncertainty in processes important to long-term forest carbon dynamics. To the extent that fuel treatments are able to ameliorate tree mortality rates or prevent deforestation resulting from wildfire, our results suggest that treatments may be a viable strategy to stabilize existing forest carbon stocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...