Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 6(11): 1248-1257, 2016 11.
Article in English | MEDLINE | ID: mdl-27630125

ABSTRACT

A major obstacle to curing chronic myeloid leukemia (CML) is residual disease maintained by tyrosine kinase inhibitor (TKI)-persistent leukemic stem cells (LSC). These are BCR-ABL1 kinase independent, refractory to apoptosis, and serve as a reservoir to drive relapse or TKI resistance. We demonstrate that Polycomb Repressive Complex 2 is misregulated in chronic phase CML LSCs. This is associated with extensive reprogramming of H3K27me3 targets in LSCs, thus sensitizing them to apoptosis upon treatment with an EZH2-specific inhibitor (EZH2i). EZH2i does not impair normal hematopoietic stem cell survival. Strikingly, treatment of primary CML cells with either EZH2i or TKI alone caused significant upregulation of H3K27me3 targets, and combined treatment further potentiated these effects and resulted in significant loss of LSCs compared to TKI alone, in vitro, and in long-term bone marrow murine xenografts. Our findings point to a promising epigenetic-based therapeutic strategy to more effectively target LSCs in patients with CML receiving TKIs. SIGNIFICANCE: In CML, TKI-persistent LSCs remain an obstacle to cure, and approaches to eradicate them remain a significant unmet clinical need. We demonstrate that EZH2 and H3K27me3 reprogramming is important for LSC survival, but renders LSCs sensitive to the combined effects of EZH2i and TKI. This represents a novel approach to more effectively target LSCs in patients receiving TKI treatment. Cancer Discov; 6(11); 1248-57. ©2016 AACR.See related article by Xie et al., p. 1237This article is highlighted in the In This Issue feature, p. 1197.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Protein Kinase Inhibitors/administration & dosage , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cellular Reprogramming/genetics , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Epigenesis, Genetic/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
2.
Blood ; 122(26): 4199-209, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24200685

ABSTRACT

TAL1 is an important regulator of hematopoiesis and its expression is tightly controlled despite complexities in its genomic organization. It is frequently misregulated in T-cell acute lymphoblastic leukemia (T-ALL), often due to deletions between TAL1 and the neighboring STIL gene. To better understand the events that lead to TAL1 expression in hematopoiesis and in T-ALL, we studied looping interactions at the TAL1 locus. In TAL1-expressing erythroid cells, the locus adopts a looping "hub" which brings into close physical proximity all known TAL1 cis-regulatory elements including CTCF-bound insulators. Loss of GATA1 results in disassembly of the hub and loss of CTCF/RAD21 from one of its insulators. Genes flanking TAL1 are partly dependent on hub integrity for their transcriptional regulation. We identified looping patterns unique to TAL1-expressing T-ALL cells, and, intriguingly, loops occurring between the TAL1 and STIL genes at the common TAL1/STIL breakpoints found in T-ALL. These findings redefine how TAL1 and neighboring genes communicate within the nucleus, and indicate that looping facilitates both normal and aberrant TAL1 expression and may predispose to structural rearrangements in T-ALL. We also propose that GATA1-dependent looping mechanisms may facilitate the conservation of TAL1 regulation despite cis-regulatory remodeling during vertebrate evolution.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Chromatin/genetics , Gene Expression Regulation, Neoplastic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins/genetics , Animals , Chromatin/chemistry , Enhancer Elements, Genetic/genetics , GATA1 Transcription Factor/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Jurkat Cells , K562 Cells , Lymphocytes/cytology , Membrane Proteins/genetics , Mice , Mice, Inbred ICR , Nucleoside-Phosphate Kinase/genetics , Promoter Regions, Genetic/genetics , Protein Conformation , T-Cell Acute Lymphocytic Leukemia Protein 1
3.
Sci Transl Med ; 4(154): 154ra135, 2012 Oct 03.
Article in English | MEDLINE | ID: mdl-23035047

ABSTRACT

Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.


Subject(s)
Genetic Diseases, Inborn/genetics , Genome, Human/genetics , Intensive Care Units, Neonatal , Sequence Analysis, DNA/methods , Connexin 26 , Connexins , Humans , Infant, Newborn , Retrospective Studies
4.
PLoS One ; 5(8): e12339, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20808788

ABSTRACT

It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons ("exon-intron marking"), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing.


Subject(s)
Exons/genetics , Histones/metabolism , Introns/genetics , Nucleosomes/genetics , Nucleosomes/metabolism , Gene Expression Regulation , Humans , K562 Cells , RNA Polymerase II/metabolism , Transcription, Genetic
5.
BMC Syst Biol ; 3: 34, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19292901

ABSTRACT

BACKGROUND: Computational modelling has become an important tool in understanding biological systems such as signalling pathways. With an increase in size complexity of models comes a need for techniques to manage model versions and their relationship to one another. Model version control for pathway models shares some of the features of software version control but has a number of differences that warrant a specific solution. RESULTS: We present a model version control method, along with a prototype implementation, based on XML patches. We show its application to the EGF/RAS/RAF pathway. CONCLUSION: Our method allows quick and convenient storage of a wide range of model variations and enables a thorough explanation of these variations. Trying to produce these results without such methods results in slow and cumbersome development that is prone to frustration and human error.


Subject(s)
Models, Biological , Programming Languages , Signal Transduction , Animals , Cell Line , Computer Simulation , Epidermal Growth Factor/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...