Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Proc Natl Acad Sci U S A ; 120(40): e2302996120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748053

ABSTRACT

Plant roots explore the soil for water and nutrients, thereby determining plant fitness and agricultural yield, as well as determining ground substructure, water levels, and global carbon sequestration. The colonization of the soil requires investment of carbon and energy, but how sugar and energy signaling are integrated with root branching is unknown. Here, we show through combined genetic and chemical modulation of signaling pathways that the sugar small-molecule signal, trehalose-6-phosphate (T6P) regulates root branching through master kinases SNF1-related kinase-1 (SnRK1) and Target of Rapamycin (TOR) and with the involvement of the plant hormone auxin. Increase of T6P levels both via genetic targeting in lateral root (LR) founder cells and through light-activated release of the presignaling T6P-precursor reveals that T6P increases root branching through coordinated inhibition of SnRK1 and activation of TOR. Auxin, the master regulator of LR formation, impacts this T6P function by transcriptionally down-regulating the T6P-degrader trehalose phosphate phosphatase B in LR cells. Our results reveal a regulatory energy-balance network for LR formation that links the 'sugar signal' T6P to both SnRK1 and TOR downstream of auxin.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Sugar Phosphates , Arabidopsis/genetics , Trehalose , Indoleacetic Acids , Protein Serine-Threonine Kinases/genetics , Arabidopsis Proteins/genetics
3.
Plant Cell ; 35(9): 3280-3302, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37378595

ABSTRACT

Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Protein Processing, Post-Translational , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
6.
J Exp Bot ; 73(8): 2308-2319, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35085386

ABSTRACT

Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism
7.
J Exp Bot ; 72(10): 3881-3901, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33758916

ABSTRACT

Plants need to cope with strong variations of nitrogen availability in the soil. Although many molecular players are being discovered concerning how plants perceive NO3- provision, it is less clear how plants recognize a lack of nitrogen. Following nitrogen removal, plants activate their nitrogen starvation response (NSR), which is characterized by the activation of very high-affinity nitrate transport systems (NRT2.4 and NRT2.5) and other sentinel genes involved in N remobilization such as GDH3. Using a combination of functional genomics via transcription factor perturbation and molecular physiology studies, we show that the transcription factors belonging to the HHO subfamily are important regulators of NSR through two potential mechanisms. First, HHOs directly repress the high-affinity nitrate transporters, NRT2.4 and NRT2.5. hho mutants display increased high-affinity nitrate transport activity, opening up promising perspectives for biotechnological applications. Second, we show that reactive oxygen species (ROS) are important to control NSR in wild-type plants and that HRS1 and HHO1 overexpressors and mutants are affected in their ROS content, defining a potential feed-forward branch of the signaling pathway. Taken together, our results define the relationships of two types of molecular players controlling the NSR, namely ROS and the HHO transcription factors. This work (i) up opens perspectives on a poorly understood nutrient-related signaling pathway and (ii) defines targets for molecular breeding of plants with enhanced NO3- uptake.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Nitrates/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Reactive Oxygen Species , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Nat Commun ; 11(1): 1157, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123177

ABSTRACT

Dynamic reprogramming of gene regulatory networks (GRNs) enables organisms to rapidly respond to environmental perturbation. However, the underlying transient interactions between transcription factors (TFs) and genome-wide targets typically elude biochemical detection. Here, we capture both stable and transient TF-target interactions genome-wide within minutes after controlled TF nuclear import using time-series chromatin immunoprecipitation (ChIP-seq) and/or DNA adenine methyltransferase identification (DamID-seq). The transient TF-target interactions captured uncover the early mode-of-action of NIN-LIKE PROTEIN 7 (NLP7), a master regulator of the nitrogen signaling pathway in plants. These transient NLP7 targets captured in root cells using temporal TF perturbation account for 50% of NLP7-regulated genes not detectably bound by NLP7 in planta. Rapid and transient NLP7 binding activates early nitrogen response TFs, which we validate to amplify the NLP7-initiated transcriptional cascade. Our approaches to capture transient TF-target interactions genome-wide can be applied to validate dynamic GRN models for any pathway or organism of interest.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Active Transport, Cell Nucleus/genetics , Arabidopsis/physiology , Binding Sites , Genome, Plant , Plant Roots/genetics , Plant Roots/metabolism , Transcription, Genetic
10.
Plant Cell ; 31(5): 1171-1184, 2019 05.
Article in English | MEDLINE | ID: mdl-30872321

ABSTRACT

Nitrogen (N) and phosphorus (P) are key macronutrients sustaining plant growth and crop yield and ensuring food security worldwide. Understanding how plants perceive and interpret the combinatorial nature of these signals thus has important agricultural implications within the context of (1) increased food demand, (2) limited P supply, and (3) environmental pollution due to N fertilizer usage. Here, we report the discovery of an active control of P starvation response (PSR) by a combination of local and long-distance N signaling pathways in plants. We show that, in Arabidopsis (Arabidopsis thaliana), the nitrate transceptor CHLORINA1/NITRATE TRANSPORTER1.1 (CHL1/NRT1.1) is a component of this signaling crosstalk. We also demonstrate that this crosstalk is dependent on the control of the accumulation and turnover by N of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), a master regulator of P sensing and signaling. We further show an important role of PHOSPHATE2 (PHO2) as an integrator of the N availability into the PSR since the effect of N on PSR is strongly affected in pho2 mutants. We finally show that PHO2 and NRT1.1 influence each other's transcript levels. These observations are summarized in a model representing a framework with several entry points where N signal influence PSR. Finally, we demonstrate that this phenomenon is conserved in rice (Oryza sativa) and wheat (Triticum aestivum), opening biotechnological perspectives in crop plants.


Subject(s)
Anion Transport Proteins/metabolism , Arabidopsis/genetics , Oryza/genetics , Phosphates/deficiency , Plant Proteins/metabolism , Signal Transduction , Triticum/genetics , Anion Transport Proteins/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Nitrates/metabolism , Nitrogen/metabolism , Oryza/physiology , Phosphorus/metabolism , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Triticum/physiology
11.
Elife ; 72018 02 17.
Article in English | MEDLINE | ID: mdl-29453864

ABSTRACT

All living organisms require a variety of essential elements for their basic biological functions. While the homeostasis of nutrients is highly intertwined, the molecular and genetic mechanisms of these dependencies remain poorly understood. Here, we report a discovery of a molecular pathway that controls phosphate (Pi) accumulation in plants under Zn deficiency. Using genome-wide association studies, we first identified allelic variation of the Lyso-PhosphatidylCholine (PC) AcylTransferase 1 (LPCAT1) gene as the key determinant of shoot Pi accumulation under Zn deficiency. We then show that regulatory variation at the LPCAT1 locus contributes significantly to this natural variation and we further demonstrate that the regulation of LPCAT1 expression involves bZIP23 TF, for which we identified a new binding site sequence. Finally, we show that in Zn deficient conditions loss of function of LPCAT1 increases the phospholipid Lyso-PhosphatidylCholine/PhosphatidylCholine ratio, the expression of the Pi transporter PHT1;1, and that this leads to shoot Pi accumulation.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/metabolism , Homeostasis , Phosphates/metabolism , Trace Elements/metabolism , Zinc/metabolism , 1-Acylglycerophosphocholine O-Acyltransferase/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Genome-Wide Association Study , Plant Shoots/enzymology , Plant Shoots/metabolism , Protein Binding
12.
Curr Opin Plant Biol ; 39: 159-167, 2017 10.
Article in English | MEDLINE | ID: mdl-28802165

ABSTRACT

Plant specific GARP transcription factor family (made of ARR-B and G2-like) contains genes with very diverse in planta functions: nutrient sensing, root and shoot development, floral transition, chloroplast development, circadian clock oscillation maintenance, hormonal transport and signaling. In this work we review: first, their structural but distant relationships with MYB transcription factors, second, their role in planta, third, the diversity of their Cis-regulatory elements, fourth, their potential protein partners. We conclude that the GARP family may hold keys to understand the interactions between nutritional signaling pathways (nitrogen and phosphate at least) and development. Understanding how plant nutrition and development are coordinated is central to understand how to adapt plants to an ever-changing environment. Consequently GARPs are likely to attract increasing research attentions, as they are likely at the crossroads of these fundamental processes.


Subject(s)
Arabidopsis Proteins/metabolism , Plants/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , DNA/metabolism , Plants/genetics , Protein Structure, Tertiary , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...