Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 24(1): 688, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987682

ABSTRACT

BACKGROUND: Dengue fever has become a significant worldwide health concern, because of its high morbidity rate and the potential for an increase in mortality rates due to lack of adequate treatment. There is an immediate need for the development of effective medication for dengue fever. METHODS: Homology modeling of dengue virus (DENV) non-structural 4B (NS4B) protein was performed by SWISS-MODEL to predict the 3D structure of the protein. Structure validation was conducted using PROSA, PROCHECK, Ramachandran plot, and VERIFY-3D. MOE software was used to find out the in-Silico inhibitory potential of the five triterpenoids against the DENV-NS4B protein. RESULTS: The SWISS-MODEL was employed to predict the three-dimensional protein structure of the NS4B protein. Through molecular docking, it was found that the chosen triterpenoid NS4B protein had a high binding affinity interaction. It was observed that the NS4B protein binding energy for 15-oxoursolic acid, betulinic acid, ursolic acid, lupeol, and 3-o-acetylursolic acid were - 7.18, - 7.02, - 5.71, - 6.67 and - 8.00 kcal/mol, respectively. CONCLUSIONS: NS4B protein could be a promising target which showed good interaction with tested triterpenoids which can be developed as a potential antiviral drug for controlling dengue virus pathogenesis by inhibiting viral replication. However, further investigations are necessary to validate and confirm their efficacy.


Subject(s)
Antiviral Agents , Dengue Virus , Molecular Docking Simulation , Triterpenes , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Dengue Virus/drug effects , Dengue Virus/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding , Humans , Dengue/virology , Dengue/drug therapy , Protein Conformation , Membrane Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...