Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(22): e2008555, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33899284

ABSTRACT

While being electrically insulating, magnetic insulators can behave as good spin conductors by carrying spin current with excited spin waves. So far, magnetic insulators are utilized in multilayer heterostructures for optimizing spin transport or to form magnon spin valves for reaching controls over the spin flow. In these studies, it remains an intensively visited topic as to what the corresponding roles of coherent and incoherent magnons are in the spin transmission. Meanwhile, understanding the underlying mechanism associated with spin transmission in insulators can help to identify new mechanisms that can further improve the spin transport efficiency. Here, by studying spin transport in a magnetic-metal/magnetic-insulator/platinum multilayer, it is demonstrated that coherent magnons can transfer spins efficiently above the magnon bandgap of magnetic insulators. Particularly the standing spin-wave mode can greatly enhance the spin flow by inducing a resonant magnon transmission. Furthermore, within the magnon bandgap, a shutdown of spin transmission due to the blocking of coherent magnons is observed. The demonstrated magnon transmission enhancement and filtering effect provides an efficient method for modulating spin current in magnonic devices.

2.
Nat Nanotechnol ; 15(7): 563-568, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32483320

ABSTRACT

Antiferromagnets (AFMs) possess great potential in spintronics because of their immunity to external magnetic disturbance, the absence of a stray field or the resonance in the terahertz range1,2. The coupling of insulating AFMs to spin-orbit materials3-7 enables spin transport via AFM magnons. In particular, spin transmission over several micrometres occurs in some AFMs with easy-axis anisotropy8,9. Easy-plane AFMs with two orthogonal, linearly polarized magnon eigenmodes own unique advantages for low-energy control of ultrafast magnetic dynamics2. However, it is commonly conceived that these magnon modes are less likely to transmit spins because of their vanishing angular momentum9-11. Here we report experimental evidence that an easy-plane insulating AFM, an α-Fe2O3 thin film, can efficiently transmit spins over micrometre distances. The spin decay length shows an unconventional temperature dependence that cannot be captured considering solely thermal magnon scatterings. We interpret our observations in terms of an interference of two linearly polarized, propagating magnons in analogy to the birefringence effect in optics. Furthermore, our devices can realize a bi-stable spin-current switch with a 100% on/off ratio under zero remnant magnetic field. These findings provide additional tools for non-volatile, low-field control of spin transport in AFM systems.

3.
Nat Commun ; 11(1): 476, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31980644

ABSTRACT

The charge-to-spin conversion efficiency is a crucial parameter in determining the performance of many useful spintronic materials. Usually, this conversion efficiency is predetermined by the intrinsic nature of solid-state materials, which cannot be easily modified without invoking chemical or structural changes in the underlying system. Here we report on successful modulation of charge-spin conversion efficiency via the metal-insulator transition in a quintessential strongly correlated electron compound vanadium dioxide (VO2). By employing ferromagnetic resonance driven spin pumping and the inverse spin Hall effect measurement, we find a dramatic change in the spin pumping signal (decrease by > 80%) and charge-spin conversion efficiency (increase by five times) upon insulator to metal transition. The abrupt change in the structural and electrical properties of this material therefore provides useful insights on the spin related physics in a strongly correlated material undergoing a phase transition.

4.
Phys Rev Lett ; 123(24): 247206, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31922833

ABSTRACT

A quantitative investigation of the current-induced torque in antiferromagnets represents a great challenge due to the lack of an independent method for controlling Néel vectors. By utilizing an antiferromagnetic insulator with the Dzyaloshinskii-Moriya interaction α-Fe_{2}O_{3}, we show that the Néel vector can be controlled with a moderate external field, which is further utilized to calibrate the current-induced magnetic dynamics. We find that the current-induced magnetoresistance change in antiferromagnets can be complicated by resistive switching that does not have a magnetic origin. By excluding nonmagnetic switching and comparing the current-induced dynamics with the field-induced one, we determine the nature and magnitude of current-induced effects in Pt/α-Fe_{2}O_{3} bilayer films.

5.
Opt Express ; 23(19): A1120-8, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26406742

ABSTRACT

The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

SELECTION OF CITATIONS
SEARCH DETAIL
...