Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 19756, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184391

ABSTRACT

Photoplethysmography (PPG) measured by smartphone has the potential for a large scale, non-invasive, and easy-to-use screening tool. Vascular aging is linked to increased arterial stiffness, which can be measured by PPG. We investigate the feasibility of using PPG to predict healthy vascular aging (HVA) based on two approaches: machine learning (ML) and deep learning (DL). We performed data preprocessing, including detrending, demodulating, and denoising on the raw PPG signals. For ML, ridge penalized regression has been applied to 38 features extracted from PPG, whereas for DL several convolutional neural networks (CNNs) have been applied to the whole PPG signals as input. The analysis has been conducted using the crowd-sourced Heart for Heart data. The prediction performance of ML using two features (AUC of 94.7%) - the a wave of the second derivative PPG and tpr, including four covariates, sex, height, weight, and smoking - was similar to that of the best performing CNN, 12-layer ResNet (AUC of 95.3%). Without having the heavy computational cost of DL, ML might be advantageous in finding potential biomarkers for HVA prediction. The whole workflow of the procedure is clearly described, and open software has been made available to facilitate replication of the results.


Subject(s)
Aging/pathology , Deep Learning , Neural Networks, Computer , Photoplethysmography/methods , Smartphone/statistics & numerical data , Vascular Diseases/diagnosis , Adolescent , Adult , Aged , Female , Heart Rate , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Young Adult
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 104-108, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059821

ABSTRACT

Atrial fibrillation (AF) is one of the major causes of stroke, heart failure, sudden death, and cardiovascular morbidity and the most common type of arrhythmia. Its diagnosis and the initiation of treatment, however, currently requires electrocardiogram (ECG)-based heart rhythm monitoring. The photoplethysmogram (PPG) offers an alternative method, which is convenient in terms of its recording and allows for self-monitoring, thus relieving clinical staff and enabling early AF diagnosis. We introduce a PPG-based AF detection algorithm using smartphones that has a low computational cost and low memory requirements. In particular, we propose a modified PPG signal acquisition, explore new statistical discriminating features and propose simple classification equations by using sequential forward selection (SFS) and support vector machines (SVM). The algorithm is applied to clinical data and evaluated in terms of receiver operating characteristic (ROC) curve and statistical measures. The combination of Shannon entropy and the median of the peak rise height achieves perfect detection of AF on the recorded data, highlighting the potential of PPG for reliable AF detection.


Subject(s)
Photoplethysmography , Algorithms , Atrial Fibrillation , Electrocardiography , Humans , Smartphone
SELECTION OF CITATIONS
SEARCH DETAIL
...