Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(18): 25843-25857, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906866

ABSTRACT

Ever-increasing complexity of communication systems demands the co-integration of electronics and photonics. But there are still some challenges associated with the integration of thin film lithium niobate (TFLN) electro-optic modulators with the standard and well-established silicon photonics. Current TFLN platforms are mostly not compatible with the silicon photonics foundry process due to the choice of substrate or complicated fabrication requirements, including silicon substrate removal and formation of radio-frequency (RF) electrodes on the top of the TFLN. Here, we report on a platform where all the optical and RF waveguiding structures are fabricated first, and then the TFLN is bonded on top of the silicon photonic chip as the only additional step. Hence, the need for substrate removal is eliminated, and except for the last step of TFLN bonding, its fabrication process is silicon foundry compatible and much more straightforward compared to other fabrication methods.

2.
Appl Opt ; 58(26): 7241-7250, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31504000

ABSTRACT

Graphene is capable of supporting very slow waves due to sustaining surface plasmon polaritons (SPPs) at THz frequencies, whereas the metal counterpart can support such modes only at optical frequencies. In this paper, a graphene-based resonator-coupled waveguide supporting transverse-magnetic-polarized SPP modes is rigorously studied, which is capable of providing ultra-deep sub-wavelength mode confinement at the working frequency of 40 THz. First, graphene is described both electronically and electromagnetically, as in these regards, graphene's quantum capacitance plays an important role, which is calculated via its DC characteristic. Since we aim to excite extremely slow waves in graphene waveguides, namely, SPP modes, it is necessary to contemplate a non-local conductivity model to characterize graphene. Furthermore, SPP modes create strong fields at the vicinity of a graphene strip in addition to high mode confinement, accentuating the importance of including nonlinear phenomena in characterizing the wave vector of SPP (WVP) modes. Furthermore, the WVP associated with a graphene waveguide is perturbed when placing another waveguide next to it. In this work, these phenomena are explored in detail to design a graphene-based resonator-coupled waveguide, which is superior to a single graphene-based waveguide in terms of confining propagating waves. Here, a comprehensive methodology is established for assessing miniaturized graphene devices, in which nonlinear, coupling, and spatial dispersion phenomena significantly affect their characteristics.

3.
Opt Express ; 27(5): 6495-6501, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876233

ABSTRACT

Achieving ultrahigh-speed electro-optic modulators (subterahertz modulation bandwidths) is shown to be feasible in the thin-film lithium niobate integrated photonic platform. Design guidelines for optimization of the main radio-frequency and optical parameters are presented, and 3-dB modulation bandwidth up to 400 GHz is proved attainable in 3-mm-long devices. Such unprecedented bandwidths pave the path towards utilizing the devices in advanced optical communication systems.

4.
Appl Opt ; 58(3): 571-578, 2019 Jan 20.
Article in English | MEDLINE | ID: mdl-30694242

ABSTRACT

Thanks to the particular band diagram of graphene, it is recognized as a promising material for developing optoelectronic devices at the nano-scale. In this paper, a functional stack comprised of graphene and other materials is numerically investigated to extract the related capacitance-voltage curve by taking into account practical considerations regarding the nano-structured electronic devices. Polycrystalline silicon gates are used as electrical contacts in this stack, which are considered as semiconductor materials rather than metal contacts owing to the nano-scale dimensions of the constitutive materials. Moreover, graphene is effectively modeled to highlight its presence in the stack. Then, the stack is developed for the construction of a graphene field effect transistor (GFET) in order to examine the speed response of the stack. In this regard, by selecting the carrier mobility of 1500 cm2/(V·s) for graphene and a particular bias condition, the small-signal current gain of the GFET is computed so that according to the simulation results, the intrinsic cutoff frequency of 13.89 GHz is achieved.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 066611, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677380

ABSTRACT

In a causally dispersive medium the signal arrival appears in the dynamical field evolution as an increase in the field amplitude from that of the precursor fields to that of the steady-state signal. The interrelated effects of phase dispersion and frequency dependent attenuation and/or amplification alter the pulse in such a fundamental way that results in the appearance of precursor fields. Although superluminal group velocities have been found in various dispersive media, the pulse "front" and associated precursors will never travel faster than c , and hence these are the vehicles through which relativistic causality is preserved. While many rigorous studies of wave propagation and associated abnormal group velocities in passive Lorentzian media have been performed, the corresponding problem in active media has remained theoretically unexplored. This problem is addressed in the present paper, by employing the steepest descent method for the determination of the response of an active Lorentzian medium to a step modulated pulse. The steepest descent method provides a detailed description of the propagation of the pulse inside the dispersive medium in the time domain. Moreover, the evolution of the saddle points illuminates the relation between the medium parameters and the temporal evolution of the propagating pulse within the medium. Hence, useful physical insights are obtained and the interesting differences between the passive and active case are deduced.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 2): 066602, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16906992

ABSTRACT

Superluminal group velocities, defined as group velocities exceeding the speed of light in vacuum, c, have been theoretically predicted and experimentally observed in various types of dispersive media, such as passive and active Lorentzian media, one-dimensional photonic crystals, and undersized waveguides. Though superluminal group velocities have been found in these media, it has been suggested that the pulse "front" and associated transient field oscillations, known as the precursors or forerunners, will never travel faster than c, and hence relativistic causality is always preserved. Until now, few rigorous studies of these transient fields in structures exhibiting superluminal group velocities have been performed. In this paper, we present the dynamic evolution of these earliest field oscillations in one-dimensional photonic crystals (1DPC), using finite-difference time-domain (FDTD) techniques in conjunction with joint time-frequency analysis (JTFA). Our study clearly shows that the precursor fields associated with superluminal pulse propagation travel at subluminal speeds, and thus, the arrival of these precursor fields must be associated with the arrival of "genuine information." Our study demonstrates the expected result that abnormal group velocities do not contradict Einstein causality. This work also shows that FDTD analysis and JTFA can be combined to study the dynamic evolution of the transient and steady state pulse propagation in dispersive media.

SELECTION OF CITATIONS
SEARCH DETAIL
...