Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38194286

ABSTRACT

Neonatal gene therapy has been shown to prevent inner ear dysfunction in mouse models of Usher syndrome type I (USH1), the most common genetic cause of combined deafness-blindness and vestibular dysfunction. However, hearing onset occurs after birth in mice and in utero in humans, making it questionable how to transpose murine gene therapy outcomes to clinical settings. Here, we sought to extend the therapeutic time window in a mouse model for USH1G to periods corresponding to human neonatal stages, more suitable for intervention in patients. Mice with deletion of Ush1g (Ush1g-/-) were subjected to gene therapy after the hearing onset. The rescue of inner ear hair cell structure was evaluated by confocal imaging and electron microscopy. Hearing and vestibular function were assessed by recordings of the auditory brain stem response and vestibulo-ocular reflex and by locomotor tests. Up to P21, gene therapy significantly restored both the hearing and balance deficits in Ush1g-/- mice. However, beyond this age and up to P30, vestibular function was restored but not hearing. Our data show that effective gene therapy is possible in Ush1g-/- mice well beyond neonatal stages, implying that the therapeutic window for USH1G may be wide enough to be transposable to newborn humans.


Subject(s)
Usher Syndromes , Vestibule, Labyrinth , Humans , Animals , Mice , Usher Syndromes/genetics , Usher Syndromes/therapy , Hearing , Genetic Therapy/methods
2.
R Soc Open Sci ; 10(6): 230644, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37325593

ABSTRACT

Hearing loss is the most common sensory deficit experienced by humans and represents one of the largest chronic health conditions worldwide. It is expected that around 10% of the world's population will be affected by disabling hearing impairment by 2050. Hereditary hearing loss accounts for most of the known forms of congenital deafness, and over 25% of adult-onset or progressive hearing loss. Despite the identification of well over 130 genes associated with deafness, there is currently no curative treatment for inherited deafness. Recently, several pre-clinical studies in mice that exhibit key features of human deafness have shown promising hearing recovery through gene therapy involving the replacement of the defective gene with a functional one. Although the potential application of this therapeutic approach to humans is closer than ever, substantial further challenges need to be overcome, including testing the safety and longevity of the treatment, identifying critical therapeutic time windows and improving the efficiency of the treatment. Herein, we provide an overview of the recent advances in gene therapy and highlight the current hurdles that the scientific community need to overcome to ensure a safe and secure implementation of this therapeutic approach in clinical trials.

3.
Nat Rev Genet ; 24(10): 665-686, 2023 10.
Article in English | MEDLINE | ID: mdl-37173518

ABSTRACT

Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Mice , Animals , Humans , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/therapy , Hearing/genetics , Genetic Therapy , Gene Editing , Deafness/genetics , Deafness/therapy , Mammals/genetics
4.
J Clin Med ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36769694

ABSTRACT

Hearing loss, the most common human sensory defect worldwide, is a major public health problem. About 70% of congenital forms and 25% of adult-onset forms of deafness are of genetic origin. In total, 136 deafness genes have already been identified and there are thought to be several hundred more awaiting identification. However, there is currently no cure for sensorineural deafness. In recent years, translational research studies have shown gene therapy to be effective against inherited inner ear diseases, and the application of this technology to humans is now within reach. We provide here a comprehensive and practical overview of current advances in gene therapy for inherited deafness, with and without an associated vestibular defect. We focus on the different gene therapy approaches, considering their prospects, including the viral vector used, and the delivery route. We also discuss the clinical application of the various strategies, their strengths, weaknesses, and the challenges to be overcome.

5.
iScience ; 25(12): 105628, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36483015

ABSTRACT

Hearing depends on fast and sustained calcium-dependent synaptic vesicle fusion at the ribbon synapses of cochlear inner hair cells (IHCs). The implication of the canonical neuronal SNARE complex in this exocytotic process has so far remained controversial. We investigated the role of SNAP-25, a key component of this complex, in hearing, by generating and analyzing a conditional knockout mouse model allowing a targeted postnatal deletion of Snap-25 in IHCs. Mice subjected to IHC Snap-25 inactivation after hearing onset developed severe to profound deafness because of defective IHC exocytosis followed by ribbon degeneration and IHC loss. Viral transfer of Snap-25 in these mutant mice rescued their hearing function by restoring IHC exocytosis and preventing synapses and hair cells from degeneration. These results demonstrate that SNAP-25 is essential for normal hearing function, most likely by ensuring IHC exocytosis and ribbon synapse maintenance.

6.
Otol Neurotol ; 40(5): 559-570, 2019 06.
Article in English | MEDLINE | ID: mdl-31083073

ABSTRACT

OBJECTIVE: To provide an overview of biotechnology and pharmaceutical companies active in the field of inner ear and central hearing disorders and their therapeutic approaches. METHODS: Scientific and grey literature was searched using broad search terms to identify companies and their hearing-related therapeutic approaches. For each approach its lead indication, product, therapeutic modality, target, mechanism of action and current phase of clinical development was collated. RESULTS: A total of 43 biotechnology and pharmaceutical companies have been identified that are developing therapeutics for inner ear and central hearing disorders. Their therapeutics include drug-, cell- and gene-based approaches to prevent hearing loss or its progression, restore hearing, and regenerate the inner ear. Their therapeutic targets and specific mechanisms of action are wide-ranging, reflecting the complexity of the hearing pathways and the diversity of mechanisms underlying inner ear disorders. While none of the novel products under investigation have yet made it to the clinical market, and a large proportion are still at preclinical phase, many therapeutics have already entered clinical testing with more expected to do so in the next few years. CONCLUSION: A wide range of novel therapeutics targeting different hearing, balance and tinnitus pathways, and patient populations are approaching the clinical domain. It is important that clinicians involved in the care of patients with hearing loss prepare for what may become a radically different approach to the management of hearing disorders, and develop a true understanding of the new therapies' mechanisms of action, applications, and indications.


Subject(s)
Biotechnology/trends , Drug Industry/trends , Hearing Loss/therapy , Otolaryngology/trends , Regenerative Medicine/trends , Biotechnology/methods , Drug Industry/methods , Ear, Inner , Hearing Aids/trends , Humans , Otolaryngology/methods , Regenerative Medicine/methods
7.
J Neurosci ; 39(18): 3394-3411, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30833506

ABSTRACT

Transmitter release at auditory inner hair cell (IHC) ribbon synapses involves exocytosis of glutamatergic vesicles during voltage activation of L-type Cav1.3 calcium channels. At these synapses, the fast and indefatigable release of synaptic vesicles by IHCs is controlled by otoferlin, a six-C2-domain (C2-ABCDEF) protein that functions as a high-affinity Ca2+ sensor. The molecular events by which each otoferlin C2 domain contributes to the regulation of the synaptic vesicle cycle in IHCs are still incompletely understood. Here, we investigate their role using a cochlear viral cDNA transfer approach in vivo, where IHCs of mouse lacking otoferlin (Otof-/- mice of both sexes) were virally transduced with cDNAs of various mini-otoferlins. Using patch-clamp recordings and membrane capacitance measurements, we show that the viral transfer of mini-otoferlin containing C2-ACEF, C2-EF, or C2-DEF partially restores the fast exocytotic component in Otof-/- mouse IHCs. The restoration was much less efficient with C2-ACDF, underlining the importance of the C2-EF domain. None of the mini-otoferlins tested restored the sustained component of vesicle release, explaining the absence of hearing recovery. The restoration of the fast exocytotic component in the transduced Otof-/- IHCs was also associated with a recovery of Ca2+ currents with normal amplitude and fast time inactivation, confirming that the C-terminal C2 domains of otoferlin are essential for normal gating of Cav1.3 channels. Finally, the reintroduction of the mini-otoferlins C2-EF, C2-DEF, or C2-ACEF allowed us to uncover and characterize for the first time a dynamin-dependent ultrafast endocytosis in IHCs.SIGNIFICANCE STATEMENT Otoferlin, a large six-C2-domain protein, is essential for synaptic vesicle exocytosis at auditory hair cell ribbon synapses. Here, we show that the viral expression of truncated forms of otoferlin (C2-EF, C2-DEF, and C2-ACEF) can partially rescue the fast and transient release component of exocytosis in mouse hair cells lacking otoferlin, yet cannot sustain exocytosis after long repeated stimulation. Remarkably, these hair cells also display a dynamin-dependent ultrafast endocytosis. Overall, our study uncovers the pleiotropic role of otoferlin in the hair cell synaptic vesicle cycle, notably in triggering both ultrafast exocytosis and endocytosis and recruiting synaptic vesicles to the active zone.


Subject(s)
Endocytosis , Exocytosis , Hair Cells, Auditory/physiology , Membrane Proteins/physiology , Synaptic Transmission , Acoustic Stimulation , Adenoviridae/physiology , Animals , Calcium/physiology , Evoked Potentials, Auditory, Brain Stem , Female , Genetic Vectors , Male , Membrane Proteins/genetics , Mice, Knockout , Synaptic Vesicles/physiology
8.
Proc Natl Acad Sci U S A ; 116(10): 4496-4501, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782832

ABSTRACT

Autosomal recessive genetic forms (DFNB) account for most cases of profound congenital deafness. Adeno-associated virus (AAV)-based gene therapy is a promising therapeutic option, but is limited by a potentially short therapeutic window and the constrained packaging capacity of the vector. We focus here on the otoferlin gene underlying DFNB9, one of the most frequent genetic forms of congenital deafness. We adopted a dual AAV approach using two different recombinant vectors, one containing the 5' and the other the 3' portions of otoferlin cDNA, which exceed the packaging capacity of the AAV when combined. A single delivery of the vector pair into the mature cochlea of Otof-/- mutant mice reconstituted the otoferlin cDNA coding sequence through recombination of the 5' and 3' cDNAs, leading to the durable restoration of otoferlin expression in transduced cells and a reversal of the deafness phenotype, raising hopes for future gene therapy trials in DFNB9 patients.


Subject(s)
Deafness/therapy , Dependovirus/genetics , Genetic Therapy , Membrane Proteins/genetics , Animals , Deafness/genetics , Disease Models, Animal , Genetic Vectors , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
9.
Article in English | MEDLINE | ID: mdl-30617058

ABSTRACT

To provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound.


Subject(s)
Hair Cells, Auditory/physiology , Neurons, Afferent/physiology , Synapses/physiology , Animals , Calcium Channels, L-Type/physiology , Humans , Membrane Potentials , Receptors, Glutamate/physiology
11.
Med Sci (Paris) ; 34(10): 842-848, 2018 Oct.
Article in French | MEDLINE | ID: mdl-30451679

ABSTRACT

Hearing and balance impairment are major concerns and a serious public health burden, as it affects millions of people worldwide, but still lacks an effective curative therapy. Recent breakthroughs in preclinical and clinical studies using viral gene therapy suggest that such an approach might succeed in curing many genetic diseases. Our actual understanding and the comprehensive analysis of the molecular bases of genetic deafness forms have provided the multiple bridges toward gene therapy to correct, replace, or modify the expression of defective endogenous genes involved in deafness. The aim of this review article is to summarize the recent advances in the restoration of cochlear and vestibular functions by local gene therapy in mouse models of Usher syndrome, the leading genetic cause of deafness associated with blindness in the world. We focus herein on therapeutic approaches with the highest potential for clinical application.


Subject(s)
Genetic Therapy/trends , Usher Syndromes/genetics , Usher Syndromes/therapy , Animals , Disease Models, Animal , Genetic Therapy/methods , Humans , Mice , Usher Syndromes/pathology , Vestibule, Labyrinth/pathology
12.
Nat Commun ; 9(1): 4015, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275467

ABSTRACT

In the adult auditory organ, mechanoelectrical transducer (MET) channels are essential for transducing acoustic stimuli into electrical signals. In the absence of incoming sound, a fraction of the MET channels on top of the sensory hair cells are open, resulting in a sustained depolarizing current. By genetically manipulating the in vivo expression of molecular components of the MET apparatus, we show that during pre-hearing stages the MET current is essential for establishing the electrophysiological properties of mature inner hair cells (IHCs). If the MET current is abolished in adult IHCs, they revert into cells showing electrical and morphological features characteristic of pre-hearing IHCs, including the re-establishment of cholinergic efferent innervation. The MET current is thus critical for the maintenance of the functional properties of adult IHCs, implying a degree of plasticity in the mature auditory system in response to the absence of normal transduction of acoustic signals.


Subject(s)
Action Potentials/physiology , Cochlea/innervation , Efferent Pathways/metabolism , Hair Cells, Auditory, Inner/physiology , Mechanotransduction, Cellular/physiology , Animals , Auditory Pathways/cytology , Auditory Pathways/metabolism , Cells, Cultured , Cholinergic Agents/metabolism , Cochlea/cytology , Efferent Pathways/cytology , Gerbillinae , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Mechanotransduction, Cellular/genetics , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Stereocilia/metabolism
13.
J Clin Invest ; 128(8): 3382-3401, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29985171

ABSTRACT

Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavß2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Hair Cells, Auditory/metabolism , Membrane Proteins , Synapses , Usher Syndromes , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cytoskeletal Proteins , Dependovirus , Disease Models, Animal , Hair Cells, Auditory/pathology , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Mice , Mice, Knockout , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Usher Syndromes/genetics , Usher Syndromes/metabolism , Usher Syndromes/pathology , Usher Syndromes/therapy
14.
Elife ; 62017 11 07.
Article in English | MEDLINE | ID: mdl-29111973

ABSTRACT

Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (OtofAla515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.


Subject(s)
Hair Cells, Auditory/physiology , Membrane Fusion , Membrane Proteins/metabolism , Receptors, Calcium-Sensing/metabolism , Synapses/physiology , Synaptic Vesicles/metabolism , Animals , Calcium/metabolism , Gene Knock-In Techniques , Membrane Proteins/genetics , Mice , Protein Binding , Receptors, Calcium-Sensing/genetics
15.
Proc Natl Acad Sci U S A ; 114(36): 9695-9700, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28835534

ABSTRACT

Our understanding of the mechanisms underlying inherited forms of inner ear deficits has considerably improved during the past 20 y, but we are still far from curative treatments. We investigated gene replacement as a strategy for restoring inner ear functions in a mouse model of Usher syndrome type 1G, characterized by congenital profound deafness and balance disorders. These mice lack the scaffold protein sans, which is involved both in the morphogenesis of the stereociliary bundle, the sensory antenna of inner ear hair cells, and in the mechanoelectrical transduction process. We show that a single delivery of the sans cDNA by the adenoassociated virus 8 to the inner ear of newborn mutant mice reestablishes the expression and targeting of the protein to the tips of stereocilia. The therapeutic gene restores the architecture and mechanosensitivity of stereociliary bundles, improves hearing thresholds, and durably rescues these mice from the balance defects. Our results open up new perspectives for efficient gene therapy of cochlear and vestibular disorders by showing that even severe dysmorphogenesis of stereociliary bundles can be corrected.


Subject(s)
Usher Syndromes/genetics , Usher Syndromes/therapy , Animals , Animals, Newborn , DNA, Complementary/administration & dosage , DNA, Complementary/genetics , Dependovirus/genetics , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem , Genetic Therapy/methods , Genetic Vectors , Hair Cells, Auditory/pathology , Hair Cells, Auditory/physiology , Humans , Mice , Mice, Knockout , Microscopy, Electron, Scanning , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Usher Syndromes/physiopathology , Vestibule, Labyrinth/pathology , Vestibule, Labyrinth/physiopathology
16.
J Neurosci ; 37(11): 2960-2975, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28193694

ABSTRACT

The mechanisms orchestrating transient and sustained exocytosis in auditory inner hair cells (IHCs) remain largely unknown. These exocytotic responses are believed to mobilize sequentially a readily releasable pool of vesicles (RRP) underneath the synaptic ribbons and a slowly releasable pool of vesicles (SRP) at farther distance from them. They are both governed by Cav1.3 channels and require otoferlin as Ca2+ sensor, but whether they use the same Cav1.3 isoforms is still unknown. Using whole-cell patch-clamp recordings in posthearing mice, we show that only a proportion (∼25%) of the total Ca2+ current in IHCs displaying fast inactivation and resistance to 20 µm nifedipine, a l-type Ca2+ channel blocker, is sufficient to trigger RRP but not SRP exocytosis. This Ca2+ current is likely conducted by short C-terminal isoforms of Cav1.3 channels, notably Cav1.342A and Cav1.343S, because their mRNA is highly expressed in wild-type IHCs but poorly expressed in Otof-/- IHCs, the latter having Ca2+ currents with considerably reduced inactivation. Nifedipine-resistant RRP exocytosis was poorly affected by 5 mm intracellular EGTA, suggesting that the Cav1.3 short isoforms are closely associated with the release site at the synaptic ribbons. Conversely, our results suggest that Cav1.3 long isoforms, which carry ∼75% of the total IHC Ca2+ current with slow inactivation and confer high sensitivity to nifedipine and to internal EGTA, are essentially involved in recruiting SRP vesicles. Intracellular Ca2+ imaging showed that Cav1.3 long isoforms support a deep intracellular diffusion of Ca2+SIGNIFICANCE STATEMENT Auditory inner hair cells (IHCs) encode sounds into nerve impulses through fast and indefatigable Ca2+-dependent exocytosis at their ribbon synapses. We show that this synaptic process involves long and short C-terminal isoforms of the Cav1.3 Ca2+ channel that differ in the kinetics of their Ca2+-dependent inactivation and their relative sensitivity to the l-type Ca2+ channel blocker nifedipine. The short C-terminal isoforms, having fast inactivation and low sensitivity to nifedipine, mainly control the fast fusion of the readily releasable pool (RRP); that is, they encode the phasic exocytotic component. The long isoforms, with slow inactivation and great sensitivity to nifedipine, mainly regulate the vesicular replenishment of the RRP; that is, the sustained or tonic exocytosis.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium Signaling/physiology , Exocytosis/physiology , Hair Cells, Auditory, Inner/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/classification , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Protein Isoforms/classification , Protein Isoforms/metabolism
17.
Cell ; 163(4): 894-906, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26544938

ABSTRACT

A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage.


Subject(s)
Hearing Loss, Noise-Induced/metabolism , Nerve Tissue Proteins/metabolism , Peroxisomes/metabolism , Proteins/metabolism , Animals , Auditory Pathways , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hearing Loss, Noise-Induced/pathology , Humans , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/metabolism , Oxidative Stress , Proteins/genetics
18.
J Neurosci ; 34(33): 10853-69, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25122888

ABSTRACT

The hair cell ribbon synapses of the mammalian auditory and vestibular systems differ greatly in their anatomical organization and firing properties. Notably, vestibular Type I hair cells (VHC-I) are surrounded by a single calyx-type afferent terminal that receives input from several ribbons, whereas cochlear inner hair cells (IHCs) are contacted by several individual afferent boutons, each facing a single ribbon. The specificity of the presynaptic molecular mechanisms regulating transmitter release at these different sensory ribbon synapses is not well understood. Here, we found that exocytosis during voltage activation of Ca(2+) channels displayed higher Ca(2+) sensitivity, 10 mV more negative half-maximum activation, and a smaller dynamic range in VHC-I than in IHCs. VHC-I had a larger number of Ca(2+) channels per ribbon (158 vs 110 in IHCs), but their Ca(2+) current density was twofold smaller because of a smaller open probability and unitary conductance. Using confocal and stimulated emission depletion immunofluorescence microscopy, we showed that VHC-I had fewer synaptic ribbons (7 vs 17 in IHCs) to which Cav1.3 channels are more tightly organized than in IHCs. Gradual intracellular Ca(2+) uncaging experiments revealed that exocytosis had a similar intrinsic Ca(2+) sensitivity in both VHC-I and IHCs (KD of 3.3 ± 0.6 µM and 4.0 ± 0.7 µM, respectively). In otoferlin-deficient mice, exocytosis was largely reduced in VHC-I and IHCs. We conclude that VHC-I and IHCs use a similar micromolar-sensitive otoferlin Ca(2+) sensor and that their sensory encoding specificity is essentially determined by a different functional organization of Ca(2+) channels at their synaptic ribbons.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Exocytosis/physiology , Hair Cells, Vestibular/physiology , Membrane Proteins/metabolism , Organ of Corti/physiology , Synapses/physiology , Animals , Cochlea/metabolism , Cochlea/physiology , Hair Cells, Vestibular/metabolism , Mice , Organ of Corti/metabolism
19.
Med Sci (Paris) ; 29(10): 883-9, 2013 Oct.
Article in French | MEDLINE | ID: mdl-24148127

ABSTRACT

Thanks to the advances accomplished in human genomics during the last twenty years, major progress has been made towards understanding the pathogenesis of various forms of congenital or acquired deafness. The identification of deafness genes, which are potential therapeutic targets, and generation and functional characterization of murine models for human deafness forms have advanced the knowledge of the molecular physiology of auditory sensory cells. These milestones have opened the way for the development of new therapeutic strategies, alternatives to conventional prostheses, hearing amplification for mild-to-severe hearing loss, or cochlear implantation for severe-to-profound deafness. In this review, we first summarize the progress made over the last decade in using gene therapy and antisense RNA delivery, including the development of new methods for cochlear gene transfer. We then discuss the potential of gene therapy for curing acquired or inherited deafness and the major obstacles that must be overcome before clinical application can be considered.


Subject(s)
Genetic Therapy/methods , Hearing Loss/therapy , Animals , Ear, Inner/metabolism , Gene Transfer Techniques , Genetic Therapy/trends , Hearing Loss/epidemiology , Hearing Loss/genetics , Humans , Mice
20.
Annu Rev Neurosci ; 35: 509-28, 2012.
Article in English | MEDLINE | ID: mdl-22715884

ABSTRACT

Cochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions.


Subject(s)
Hair Cells, Auditory, Inner/physiology , Synapses/physiology , Synaptic Transmission/physiology , Animals , Cochlea/growth & development , Cochlea/metabolism , Cochlea/physiology , Exocytosis/physiology , Glutamic Acid/metabolism , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Humans , Models, Neurological , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Synapses/metabolism , Synapses/ultrastructure , Synaptic Vesicles/metabolism , Synaptic Vesicles/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...