Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 46(3): 467-482, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36520279

ABSTRACT

Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.


Subject(s)
Groundwater , Metals, Heavy , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Ecosystem , Malaysia , Metals, Heavy/analysis , Water
2.
Environ Pollut ; 302: 119061, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35231541

ABSTRACT

Endocrine disrupting chemicals (EDCs) are an emerging category of toxicity that adversely impacts humans and the environment's well-being. Diseases like cancer, cardiovascular risk, behavioral disorders, autoimmune defects, and reproductive diseases are related to these endocrine disruptors. Because these chemicals exist in known sources such as pharmaceuticals and plasticizers, as well as non-point sources such as agricultural runoff and storm water infiltration, the interactive effects of EDCs are gaining attention. However, the efficiency of conventional treatment methods is not sufficient to fully remediate EDCs from aqueous environments as the occurrence of EDC bioremediation and biodegradation is detected in remediated drinking water. Incorporating modification into current remediation techniques has to overcome challenges such as high energy consumption and health risks resulting from conventional treatment. Hence, the use of advanced psychochemical and biological treatments such as carbon-based adsorption, membrane technology, nanostructured photocatalysts, microbial and enzyme technologies is crucial. Intensifying environmental and health concerns about these mixed contaminants are primarily due to the lack of laws about acute concentration limits of these EDCs in municipal wastewater, groundwater, surface water, and drinking water. This review article offers evidence of fragmentary available data for the source, fate, toxicity, ecological and human health impact, remediation techniques, and mechanisms during EDC removal, and supports the need for further data to address the risks associated with the presence of EDCs in the environment. The reviews also provide comprehensive data for biodegradation of EDCs by using microbes such as fungi, bacteria, yeast, filamentous fungi, and their extracellular enzymes.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Biodegradation, Environmental , Endocrine Disruptors/analysis , Humans , Technology , Wastewater/analysis , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 297: 134151, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35245589

ABSTRACT

Numerous chemical substances are used for daily life activities have an effect on the endocrine system and are frequently classed as endocrine-disrupting chemicals (EDCs). The present study investigated the fact and distribution of EDCs type (estrogen, plasticizer, and preservative). In particular, EDCs such as estriol, 1,2,4 triazole, 17α-ethinylestradiol, methyl paraben, estrone, 3,4,4 trichlorocarbanilide, 17ß-estradiol, and bisphenol A (BPA) were selected as the target EDCs for the detection in the Bengawan Solo and Brantas rivers located in Indonesia. Among the targeted EDCs, BPA is found to be highest in the water samples of Bengawan Solo (1070 ng/L and mean at 219 ng/L) and Brantas (556 ng/L and mean at 222 ng/L) rivers. The EDCs concentration is higher in both rivers during the dry season compared to the wet season due to the dilution effect caused by heavy rainfall. The entry of municipal wastewater is the primary sources of EDCs contamination in both rivers. Finally, this study suggests that the contamination level of EDCs in river water could pose an environmental threat, particularly during dry seasons.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , China , Endocrine Disruptors/analysis , Environmental Monitoring , Indonesia , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...