Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Virol ; 168(9): 232, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594542

ABSTRACT

Lumpy skin disease virus (LSDV), camelpox virus (CPV), and orf virus (ORFV) are members of the family Poxviridae. These viruses are usually isolated or produced in embryonated eggs or primary cells because continuous cell lines are less sensitive to infection. Disadvantages of the use of eggs or primary cells include limited availability, potential endogenous contaminants, and a limited ability to perform multiple passages. In this study, we developed a diploid cell culture from sheep embryonic hearts (EHs) and demonstrated its high proliferative and long-term storage capacities. In addition, we demonstrated its sensitivity to representatives of three genera of the family Poxviridae: Capripoxvirus (LSDV), Orthopoxvirus (CPV), and Parapoxvirus (ORFV). The cell culture had a doubling time of 24 h and reached 40 passages with satisfactory yield. This is comparable to that observed in primary lamb testis (LT) cells at passage 5 (P5). After infection, each poxvirus titer was 7.0-7.6 log TCID50/mL for up to five passages and approximately 6.8, 6.4, and 5.6 for the three viruses at P6-P25, P30, and P40, respectively. The sensitivity of sheep EH cells to poxvirus infection did not decrease after long-term storage in liquid nitrogen and was higher than that of primary LT cells, which are used for capripoxvirus and parapoxvirus detection and growth, and Vero cells, which are used for orthopoxvirus detection and growth. Thus, EH diploid cells are useful for poxvirus isolation and production without embryonated eggs or primary cells.


Subject(s)
Capripoxvirus , Lumpy skin disease virus , Orf virus , Poxviridae , Chlorocebus aethiops , Cattle , Male , Animals , Sheep , Diploidy , Vero Cells , Cell Line , Capripoxvirus/genetics
2.
Viruses ; 14(2)2022 02 11.
Article in English | MEDLINE | ID: mdl-35215965

ABSTRACT

Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP). Lumpy skin disease (LSD) is a viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD and CBPP are both transboundary diseases spreading in the same areas of Africa and Asia. A combination vaccine to control CBPP and LSD offers significant value to small-scale livestock keepers as a single administration. Access to a bivalent vaccine may improve vaccination rates for both pathogens. In the present study, we evaluated the LSDV/CBPP live combined vaccine by testing the generation of virus neutralizing antibodies, immunogenicity, and safety on target species. In-vitro assessment of the Mycoplasma effect on LSDV growth in cell culture was evaluated by infectious virus titration and qPCR during 3 serial passages, whereas in-vivo interference was assessed through the antibody response to vaccination. This combined Mmm/LSDV vaccine could be used to protect cattle against both diseases with a single vaccination in the endemic countries. There were no adverse reactions detected in this study and inoculated cattle produced high levels of specific antibodies starting from day 7 post-vaccination, suggesting that this combination vaccine is both safe and effective.


Subject(s)
Bacterial Vaccines/immunology , Lumpy Skin Disease/prevention & control , Lumpy skin disease virus/immunology , Mycoplasma/immunology , Pleuropneumonia, Contagious/prevention & control , Animals , Bacterial Vaccines/administration & dosage , Cattle , Lumpy Skin Disease/immunology , Pleuropneumonia, Contagious/immunology , Vaccination/veterinary , Vaccines, Attenuated
3.
J Immunol Methods ; 502: 113226, 2022 03.
Article in English | MEDLINE | ID: mdl-35032520

ABSTRACT

Vaccination against sheep pox (SPV) is the most efficient tool to control spread of the disease and virus neutralization test (VNT) is the gold standard for vaccination monitoring. In the presented study, we evaluated the use of ELISA and VNT for quantification of SPV humoral response post vaccination. Results confirmed that VNT is more sensitive since ELISA did not detect 22% of positive tested sera, and VNT weak positive sera were either negative or doubtful by ELISA. The most sensitive cells to perform VNT were ESH-L instead of Lamb primary cells. We also investigated immunoperoxidase IPMA and immunofluorescence IFA assays for detection of SPV specific antibodies and IPMA showed higher antibody titers comparatively to IFA. VNT using ESH-L cells with immune-enzymatic revelation provide specific quantitative SPV antibody titers, easier to read in shorter incubation time.


Subject(s)
Capripoxvirus , Animals , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay/methods , Neutralization Tests , Sensitivity and Specificity , Serologic Tests/veterinary , Sheep
4.
Vet World ; 14(8): 2031-2040, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34566318

ABSTRACT

BACKGROUND AND AIM: Mannheimia haemolytica (Mha) is a common agent of pneumonia in ruminants globally, causing economic losses by morbidity, mortality, and treatment costs. Infection by Mha is often associated with or promoted by respiratory viral pathogens and environmental conditions. Infections due to Mha have rarely been described in small ruminants. This study reports the biological and molecular characteristics of a new Moroccan Mha isolate from small ruminants presenting typical respiratory symptoms. We also studied the cultural parameters, growth kinetics, and Lkt excretion of the isolate and its pathogenicity on laboratory animals and small ruminants. MATERIALS AND METHODS: Suspected pasteurellosis cases in sheep and goat flocks in Morocco were investigated. A local strain of Mha was isolated and identified using biochemical and molecular methods. Polymerase chain reaction-targeting specific genes were used for serotyping and phylogenetic analyses; further, leukotoxin production, cytotoxicity, and pathogenicity of the isolate in mice, goats, and sheep were investigated. RESULTS: Phylogeny analysis revealed 98.76% sequence identity with the USA isolate of 2013; the strain growth with a cycle of 9-10 h with leukotoxin secretion was detected by NETosis and quantified by cytotoxicity and mortality of mice. Goat and sheep infections cause hyperthermia, with characteristic postmortem lesions in the trachea and lung. CONCLUSION: A local isolate of Mha from sheep that died of pneumonia was characterized for the 1st time in North Africa using biological and molecular methods. Although growth on appropriate culture media is accompanied by intense leukotoxin secretion, experimental infections of sheep and goats cause hyperthermia and typical lesions of pneumonia.

5.
J Virol Methods ; 293: 114164, 2021 07.
Article in English | MEDLINE | ID: mdl-33864853

ABSTRACT

Lumpy skin disease virus (LSDV), sheeppox virus (SPPV) and goatpox (GTPV) virus have been usually grown on primary cells for diagnosis, production and titration purposes. The use of primary cells present several inconvenient, heavy preparation, heterogeneous cell population, non-reproducible viral titration and presence of potential endogenous contaminants. Therefore investigating sensitivity of candidate continuous cell lines is needed. In this study, we compared the above Capripox viruses (CaPVs) sensitivity of primary cells of four origin (heart, skin, testis and kidney), with three cell lines (Vero, OA3.Ts and ESH-L). We tested sensitivity for virus isolation, replication cycle and titration, revealed by cytopathic effect (CPE), immunoenzymatic staining and immunofluorescence. Our results show that ESH-L cells and primary fetal heart cells present the highest sensitivity for CaPVs growth and detection. Vero cells can replicate those viruses but without showing any CPE while the titer obtained on OA3.Ts is lower than primary and ESH-L cells. ESH-L cells are an effective alternative to primary cells use for growing Capripoxviruses and their diagnosis.


Subject(s)
Capripoxvirus , Goat Diseases , Lumpy Skin Disease , Sheep Diseases , Animals , Cattle , Chlorocebus aethiops , Goats , L Cells , Male , Mice , Phylogeny , Sheep , Vero Cells
6.
Vet Microbiol ; 256: 109046, 2021 May.
Article in English | MEDLINE | ID: mdl-33780805

ABSTRACT

Lumpy Skin Disease (LSD) and Bluetongue (BT) are the main ruminants viral vector-borne diseases. LSD is endemic in Africa and has recently emerged in Europe and central Asia as a major threat to cattle industry. BT caused great economic damage in Europe during the last decade with a continuous spread to other countries. To control these diseases, vaccination is the only economically viable tool. For LSD, only live-attenuated vaccines (LAVs) are commercially available, whilst for BT both LAVs and inactivated vaccines are available with a limited number of serotypes. In this study, we developed an inactivated, oil adjuvanted bivalent vaccine against both diseases based on LSDV Neethling strain and BTV4. The vaccine was tested for safety and immunogenicity on cattle during a one-year period. Post-vaccination monitoring was carried out by VNT and ELISA. The vaccine was completely safe and elicited high neutralizing antibodies starting from the first week following the second injection up to one year. Furthermore, a significant correlation (R = 0.9040) was observed when comparing VNT and competitive ELISA in BTV4 serological response. Following BTV4 challenge, none of vaccinated and unvaccinated cattle were registered clinical signs, however vaccinated cattle showed full protection from viraemia. In summary, this study highlights the effectiveness of this combined vaccine as a promising solution for both LSD and BT control. It also puts an emphasis on the need for the development of other multivalent inactivated vaccines, which could be greatly beneficial for improving vaccination coverage in endemic countries and prophylaxis of vector-borne diseases.


Subject(s)
Bluetongue virus/immunology , Bluetongue/prevention & control , Lumpy Skin Disease/prevention & control , Lumpy skin disease virus/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Bluetongue/virology , Cattle , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Lumpy Skin Disease/virology , Male , Sheep , Vaccination/veterinary , Vaccines, Attenuated/immunology , Vaccines, Combined/immunology , Vaccines, Inactivated/immunology , Viremia/veterinary
7.
BMC Vet Res ; 17(1): 93, 2021 Feb 27.
Article in English | MEDLINE | ID: mdl-33639955

ABSTRACT

BACKGROUND: Animal vaccination is an important way to stop the spread of diseases causing immense damage to livestock and economic losses and the potential transmission to humans. Therefore effective method for vaccine production using simple and inexpensive bioprocessing solutions is very essential. Conventional culture systems currently in use, tend to be uneconomic in terms of labor and time involved. Besides, they offer a limited surface area for growth of cells. In this study, the CelCradle™-500A was evaluated as an alternative to replace conventional culture systems in use such as Cell factories for the production of viral vaccines against small ruminant morbillivirus (PPR), rift valley fever virus (RVF) and lumpy skin disease virus (LSD). RESULTS: Two types of cells Vero and primary Lamb Testis cells were used to produce these viruses. The study was done in 2 phases as a) optimization of cell growth and b) virus cultivation. Vero cells could be grown to significantly higher cell densities of 3.04 × 109 using the CelCradle™-500A with a shorter doubling time as compared to 9.45 × 108 cells in Cell factories. This represents a 19 fold increase in cell numbers as compared to seeding vs only 3.7 fold in Cell factories. LT cells achieved modestly higher cell densities of 6.7 × 108 as compared to 6.3 × 108 in Cell factories. The fold change in densities for these cells was 3 fold in the CelCradle™-500A vs 2.5 fold in Cell factories. The titers in the conventional system and the bioreactor were not significantly different. However, the Cell-specific virus yield for rift valley fever virus and lumpy skin disease virus are higher (25 virions/cell for rift valley fever virus, and 21.9 virions/cell for lumpy skin disease virus versus 19.9 virions/cell for rift valley fever virus and 10 virions/cell for lumpy skin disease virus). CONCLUSIONS: This work represents a novel study for primary lamb testis cell culture in CellCradle™-500A bioreactors. In addition, on account of the high cell densities obtained and the linear scalability the titers could be further optimized using other culture process such us perfusion.


Subject(s)
Bioreactors , Lumpy skin disease virus/growth & development , Peste-des-petits-ruminants virus/growth & development , Rift Valley fever virus/growth & development , Animals , Cells, Cultured/virology , Chlorocebus aethiops , Sheep , Vero Cells/virology , Virus Cultivation/instrumentation , Virus Cultivation/methods
8.
Mol Biotechnol ; 54(2): 711-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23180219

ABSTRACT

Dextran sulfate 5,000 Da (DS), a sulfated polysaccharide, has been used in recombinant mammalian cell cultures to prevent cell aggregation, thereby increasing cell viability. Previous studies using Chinese hamster ovary (CHO) suspension cultures had shown that low concentrations of DS are related to an inhibition of apoptosis. In this study, DS was used on anchorage-dependent CHO cells producing erythropoietin (EPO), in order to investigate the effect of this molecule on anti-apoptotic and pro-survival cellular pathways. DS 5,000 Da treatment was shown to prolong the life of cells and increase productivity of EPO by 1.8-fold comparing with controls, in standard batch conditions. At a molecular level, we show that DS inhibits apoptosis by DNA fragmentation delay and decrease of annexin V-labeled cells, causes a G0/G1 cell cycle arrest, decreases p53 expression and increases the pro-survival factor Hsc70 expression. DS treatment also resulted in an enhanced LC3-I to LC3-II conversion and increased autophagosomes formation employing tagged-LC3. Our data show, for the first time, that low doses of DS may promote autophagy in different cell lines. These findings suggest that a better understanding and manipulation of phenomenon of autophagy could be of crucial importance in the bio-pharmaceutical industry, in particular in the field of protein production.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Cell Death/drug effects , Dextran Sulfate/pharmacology , Animals , CHO Cells , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Survival/drug effects , Cricetinae , Cricetulus , DNA Fragmentation/drug effects , Erythropoietin/metabolism , G1 Phase/drug effects , HSC70 Heat-Shock Proteins/metabolism , Resting Phase, Cell Cycle/drug effects , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...