Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 123(3): 568-580, 2022 03.
Article in English | MEDLINE | ID: mdl-34981854

ABSTRACT

Recent advances in targeted treatment for cholangiocarcinoma have focused on fibroblast growth factor (FGF) signaling. There are four receptor tyrosine kinases that respond to FGFs, and posttranslational processing has been demonstrated for each FGF receptor. Here, we investigated the role of N-linked glycosylation on the processing and function of FGFR4. We altered glycosylation through enzymatic deglycosylation, small molecule inhibition of glycosyltransferases, or through site-directed mutagenesis of selected asparagine residues in FGFR4. Signaling was tested through caspase activation, migration, and subcellular localization of FGFR4. Our data demonstrate that FGFR4 has multiple glycoforms, with predominant bands relating to the full-length receptor that has a high mannose- or hybrid-type form and a complex-type glycan form. We further identified a set of faster migrating FGFR4 bands that correspond to the intracellular kinase domain, termed FGFR4 intracellular domain (R4-ICD). These glycoforms and R4-ICD were detected in human cholangiocarcinoma tumor samples, where R4-ICD was predominant. Removal of glycans in intact cells by enzymatic deglycosylation resulted in increased processing to R4-ICD. Inhibition of glycosylation using NGI-1, an oligosaccharyltransferase inhibitor, reduced both high mannose- or hybrid- and complex-type glycan forms of FGFR4, increased processing and sensitized to apoptosis. Mutation of Asn-112, Asn-258, Asn-290, or Asn-311 to glutamine modestly reduced apoptosis resistance, while mutation of Asn-322 or simultaneous mutation of the other four asparagine residues caused a loss of cytoprotection by FGFR4. None of the glycomutants altered the migration of cancer cells. Finally, mutation of Asn-112 caused a partial localization of FGFR4 to the Golgi. Overall, preventing glycosylation at individual residues reduced the cell survival function of FGFR4 and receptor glycosylation may regulate access to an extracellular protease or proteolytic susceptibility of FGFR4.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Asparagine/genetics , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Fibroblast Growth Factors/metabolism , Glycosylation , Humans , Mannose/metabolism , Polysaccharides/chemistry , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism
2.
Leuk Res ; 77: 17-27, 2019 02.
Article in English | MEDLINE | ID: mdl-30612055

ABSTRACT

Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that are of interest due to their cytotoxic properties. MO-OH-Nap is a novel α-substituted tropolone that induces caspase cleavage and upregulates markers associated with the unfolded protein response (UPR) in multiple myeloma (MM) cells. Given previous reports that tropolones may function as iron chelators, we investigated the effects of MO-OH-Nap, as well as the known iron chelator deferoxamine (DFO), in MM cells in the presence or absence of supplemental iron. The ability of MO-OH-Nap to induce apoptosis and upregulate markers of the UPR could be completely prevented by co-incubation with either ferric chloride or ammonium ferrous sulfate. Iron also completely prevented the decrease in BrdU incorporation induced by either DFO or MO-OH-Nap. Ferrozine assays demonstrated that MO-OH-Nap directly chelates iron. Furthermore, MO-OH-Nap upregulates cell surface expression and mRNA levels of transferrin receptor. In vivo studies demonstrate increased Prussian blue staining in hepatosplenic macrophages in MO-OH-Nap-treated mice. These studies demonstrate that MO-OH-Nap-induced cytotoxic effects in MM cells are dependent on the tropolone's ability to alter cellular iron availability and establish new connections between iron homeostasis and the UPR in MM.


Subject(s)
Apoptosis/drug effects , Iron Chelating Agents/pharmacology , Iron/metabolism , Multiple Myeloma/pathology , Receptors, Transferrin/metabolism , Tropolone/pharmacology , Unfolded Protein Response/drug effects , Animals , Cell Cycle/drug effects , Cell Proliferation/drug effects , Chlorides/pharmacology , Deferoxamine/pharmacology , Female , Ferric Compounds/pharmacology , Ferrous Compounds/pharmacology , Humans , Mice , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Quaternary Ammonium Compounds/pharmacology , Siderophores/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...