Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
2.
Cancer Gene Ther ; 30(2): 368-374, 2023 02.
Article in English | MEDLINE | ID: mdl-36352093

ABSTRACT

Targeted therapeutic options and prognostic biomarkers for hormone receptor- or Her2 receptor-negative breast cancers are severely limited. The sigma-1 receptor, a stress-activated chaperone, is frequently dysregulated in disease. However, its significance in breast cancer (BCa) has not been adequately explored. Here, we report that the sigma-1 receptor gene (SIGMAR1) is elevated in BCa, particularly in the aggressive triple-negative (TNBC) subtype. By examining several patient datasets, we found that high expression at both the gene (SIGMAR1) and protein (Sig1R) levels associated with poor survival outcomes, specifically in ER-Her2- groups. Our data further show that high SIGMAR1 was predictive of shorter survival times in patients treated with adjuvant chemotherapy (ChT). Interestingly, in a separate cohort who received neoadjuvant taxane + anthracycline treatment, elevated SIGMAR1 associated with higher rates of pathologic complete response (pCR). Treatment with a Sig1R antagonist, 1-(4-iodophenyl)-3-(2-adamantyl)guanidine (IPAG), activated the unfolded protein response (UPR) in TNBC (high-Sig1R expressing) and ER + (low-Sig1R expressing) BCa cell lines. In tamoxifen-resistant LY2 cells, IPAG caused Sig1R to aggregate and co-localise with the stress marker BiP. These findings showcase the potential of Sig1R as a novel biomarker in TNBC as well as highlight its ligand-induced interference with the stress-coping mechanisms of BCa cells.


Subject(s)
Breast Neoplasms , Receptors, sigma , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Ligands , Receptors, sigma/genetics , Receptors, sigma/therapeutic use , Endoplasmic Reticulum Stress , Sigma-1 Receptor
3.
Biochem Biophys Rep ; 26: 100987, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33855228

ABSTRACT

BACKGROUND: The use of 96-well plates is ubiquitous in preclinical studies. Corner and edge wells have been observed to be more prone to evaporation compared to interior wells. METHODS: Mammalian cells were cultured in 96-well plates over a period of 72 h. VWR and Greiner plates were tested. MTS reagent was added, and metabolic activity was determined after 2 h. RESULTS: When using VWR plates, cells showed a highly heterogeneous pattern of cell growth. The outer wells showed 35% lower metabolic activity than the central wells. Cells grown in rows two and three also grew sub-optimally (25% and 10% reduction compared to central wells). Greiner plates showed better homogeneity. Cells grown in the outer wells showed 16% lower metabolic activity while cells in rows two and three showed reductions of 7 and 1%, respectively. This edge effect was partially mitigated by storing the plates in loosely sealed wrapping during incubation. Placing a buffer between the wells of the plate further improved homogeneity for the Greiner plates. CONCLUSION: Different brands of 96-well plates show different levels of the edge effect. Some clearly are inappropriate for such studies. GENERAL SIGNIFICANCE: Each laboratory needs to determine their own optimum conditions for culturing cells empirically before continuing to use multiwell plates. Otherwise, large artifacts may arise, affecting the quality of data, with the potential of introducing type I or type II errors.

5.
Sci Rep ; 10(1): 9251, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32514120

ABSTRACT

Sigma-1 and sigma-2 receptors are emerging therapeutic targets. We have identified that simple ammonium salts bind to these receptors and are effective in vivo. Radioligand binding assays were used to obtain structure-activity relationships of these salts. MTS assays were performed to determine their effect on growth in MCF7 and MDA-MB-486 cells. Anticancer properties were tested in NMRI mice transplanted with a fragment of mouse adenocarcinoma (MAC13). Antidepressant activity was tested using the forced-swim test and tail suspension tests. Dipentylammonium (Ki 43 nM), tripentylammonium (Ki 15 nM) and trihexylammonium (Ki 9 nM) showed high affinity for the sigma-1 receptor. Dioctanoylammonium had the highest affinity (K50 0.05 nM); this also showed the highest affinity for sigma-2 receptors (Ki 13 nM). Dipentylammonium was found to have antidepressant activity in vivo. Branched-chain ammonium salts showed lower affinity. Bis(2-ethylhexyl)ammonium (K50 29 µM), triisopentylammonium (K50 196 µM) and dioctanoylammonium showed a low Hill slope, and fitted a 2-site binding model for the sigma-1 receptor. We propose this two-site binding can be used to biochemically define a sigma-1 receptor antagonist. Bis(2-ethylhexyl)ammonium and triisopentylammonium were able to inhibit the growth of tumours in vivo. Cheap, simple ammonium salts act as sigma-1 receptor agonists and antagonists in vivo and require further investigation.


Subject(s)
Ammonium Compounds/chemistry , Ammonium Compounds/pharmacology , Depression/drug therapy , Molecular Targeted Therapy , Neoplasms/drug therapy , Receptors, sigma/metabolism , Salts/chemistry , Ammonium Compounds/metabolism , Ammonium Compounds/therapeutic use , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcium/metabolism , Cell Proliferation/drug effects , Depression/metabolism , Humans , MCF-7 Cells , Neoplasms/metabolism , Sigma-1 Receptor
6.
Front Pharmacol ; 11: 309, 2020.
Article in English | MEDLINE | ID: mdl-32231573

ABSTRACT

Sigma-1 and sigma-2 receptors are emerging therapeutic targets. Although the molecular identity of the sigma-2 receptor has recently been determined, receptor quantitation has used, and continues to use, the sigma-1 selective agents (+) pentazocine or dextrallorphan to mask the sigma-1 receptor in radioligand binding assays. Here, we have assessed the suitability of currently established saturation and competition binding isotherm assays that are used to quantify parameters of the sigma-2 receptor. We show that whilst the sigma-1 receptor mask (+) pentazocine has low affinity for the sigma-2 receptor (Ki 406 nM), it can effectively compete at this site with [³H] di-O-tolyl guanidine (DTG) at the concentrations frequently used to mask the sigma-1 receptor (100 nM and 1 µM). This competition influences the apparent affinity of DTG and other ligands tested in this system. A more troublesome issue is that DTG can displace (+) pentazocine from the sigma-1 receptor, rendering it partly unmasked. Indeed, commonly used concentrations of (+) pentazocine, 100 nM and 1 µM, allowed 37 and 11% respectively of sigma-1 receptors to be bound by DTG (300 nM), which could result in an overestimation of sigma-2 receptor numbers in assays where sigma-1 receptors are also present. Similarly, modelled data for 1 µM dextrallorphan show that only 71-86% of sigma-1 receptors would be masked in the presence of 300 nM DTG. Therefore, the use of dextrallorphan as a masking agent would also lead to the overestimation of sigma-2 receptors in systems where sigma-1 receptors are present. These data highlight the dangers of using masking agents in radioligand binding studies and we strongly recommend that currently used masking protocols are not used in the study of sigma-2 receptors. In order to overcome these problems, we recommend the use of a cell line apparently devoid of sigma-1 receptors [e.g., MCF7 (ATCC HTB-22)] in the absence of any masking agent when determining the affinity of agents for the sigma-2 receptor. In addition, assessing the relative levels of sigma-1 and sigma-2 receptors can be achieved using [³H] DTG saturation binding followed by two-site analysis of (+) pentazocine competition binding with [³H] DTG.

7.
Methods Mol Biol ; 2091: 75-82, 2020.
Article in English | MEDLINE | ID: mdl-31773571

ABSTRACT

The diphosphoinositol polyphosphate phosphohydrolases are a subset of the Nudix hydrolase family of enzymes. As such, they metabolize a wide range of substrates, including diphosphoinositol polyphosphates (inositol diphosphates, inositol pyrophosphates), dinucleotide phosphates, nucleosides as well as 5-phosphoribosyl 1-pyrophosphate and inorganic polyphosphate. Here, we describe protocols to optimize these enzymes, with consideration to buffer composition and sample preparation and how to analyze the metabolism of these substrates using high-performance liquid chromatography, giving advice where pitfalls are commonly encountered.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Inositol Phosphates/metabolism , Chromatography, High Pressure Liquid , Multigene Family , Substrate Specificity
8.
Int J Oncol ; 54(4): 1256-1270, 2019 04.
Article in English | MEDLINE | ID: mdl-30720135

ABSTRACT

Epidemiological studies indicate that long­term aspirin usage reduces the incidence of colorectal cancer (CRC) and may protect against other non­CRC associated adenocarcinomas, including oesophageal cancer. A number of hypotheses have been proposed with respect to the molecular action of aspirin and other non­steroidal anti­inflammatory drugs in cancer development. The mechanism by which aspirin exhibits toxicity to CRC has been previously investigated by synthesising novel analogues and derivatives of aspirin in an effort to identify functionally significant moieties. Herein, an early effect of aspirin and aspirin­like analogues against the SW480 CRC cell line was investigated, with a particular focus on critical molecules in the epidermal growth factor (EGF) pathway. The present authors proposed that aspirin, diaspirin and analogues, and diflunisal (a salicylic acid derivative) may rapidly perturb EGF and EGF receptor (EGFR) internalisation. Upon longer incubations, the diaspirins and thioaspirins may inhibit EGFR phosphorylation at Tyr1045 and Tyr1173. It was additionally demonstrated, using a qualitative approach, that EGF internalisation in the SW480 cell line may be directed to endosomes by fumaryldiaspirin using early endosome antigen 1 as an early endosomal marker and that EGF internalisation may also be perturbed in oesophageal cell lines, suggestive of an effect not only restricted to CRC cells. Taken together and in light of our previous findings that the aspirin­like analogues can affect cyclin D1 expression and nuclear factor­κB localisation, it was hypothesized that aspirin and aspirin analogues significantly and swiftly perturb the EGFR axis and that the protective activity of aspirin may in part be explained by perturbed EGFR internalisation and activation. These findings may also have implications in understanding the inhibitory effect of aspirin and salicylates on wound healing, given the critical role of EGF in the response to tissue trauma.


Subject(s)
Aspirin/pharmacology , Colorectal Neoplasms/metabolism , Salicylates/pharmacology , Signal Transduction/drug effects , Aspirin/analogs & derivatives , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Drug Screening Assays, Antitumor , EGF Family of Proteins/metabolism , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , NF-kappa B/metabolism , Phosphorylation/drug effects
9.
Curr Clin Pharmacol ; 14(2): 141-151, 2019.
Article in English | MEDLINE | ID: mdl-30417794

ABSTRACT

BACKGROUND: Oesophageal cancer (OC) is a deadly cancer because of its aggressive nature with survival rates that have barely improved in decades. Epidemiologic studies have shown that low-dose daily intake of aspirin can decrease the incidence of OC. METHODS: The toxicity of aspirin and aspirin derivatives to OC and a CRC cell line were investigated in the presence and absence of platins. RESULTS: The data in this study show the effects of a number of aspirin analogues and aspirin on OC cell lines that originally presented as squamous cell carcinoma (SSC) and adenocarcinoma (ADC). The aspirin analogues fumaryldiaspirin (PN517) and the benzoylsalicylates (PN524, PN528 and PN529), were observed to be more toxic against the OC cell lines than aspirin. Both quantitative and qualitative apoptosis experiments reveal that these compounds largely induce apoptosis, although some necrosis was evident with PN528 and PN529. Failure to recover following the treatment with these analogues emphasized that these drugs are largely cytotoxic in nature. The OE21 (SSC) and OE33 (ADC) cell lines were more sensitive to the aspirin analogues compared to the Flo-1 cell line (ADC). A non-cancerous oesophageal primary cells NOK2101, was used to determine the specificity of the aspirin analogues and cytotoxicity assays revealed that analogues PN528 and PN529 were selectively toxic to cancer cell lines, whereas PN508, PN517 and PN524 also induced cell death in NOK2101. In combination index testing synergistic interactions of the most promising compounds, including aspirin, with cisplatin, oxaliplatin and carboplatin against the OE33 cell line and the SW480 colorectal cancer (CRC) cell line were investigated. Compounds PN517 and PN524, and to a lesser extent PN528, synergised with cisplatin against OE33 cells. Cisplatin and oxaliplatin synergised with aspirin and PN517 when tested against the SW480 cell line. CONCLUSION: These findings indicate the potential and limitations of aspirin and aspirin analogues as chemotherapeutic agents against OC and CRC when combined with platins.


Subject(s)
Antineoplastic Agents/pharmacology , Aspirin/analogs & derivatives , Aspirin/pharmacology , Colorectal Neoplasms/drug therapy , Esophageal Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Aspirin/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , Drug Synergism , Humans , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use
10.
Neurotox Res ; 34(2): 263-272, 2018 08.
Article in English | MEDLINE | ID: mdl-29589276

ABSTRACT

Alzheimer's disease is a neurodegenerative disease that affects 44 million people worldwide, costing the world $605 billion to care for those affected not taking into account the physical and psychological costs for those who care for Alzheimer's patients. Dipentylammonium is a simple amine, which is structurally similar to a number of other identified sigma-1 receptor ligands with high affinities such as (2R-trans)-2butyl-5-heptylpyrrolidine, stearylamine and dodecylamine. This study investigates whether dipentylammonium is able to provide neuroprotective effects similar to those of sigma-1 receptor agonists such as PRE-084. Here we identify dipentylammonium as a sigma-1 receptor ligand with nanomolar affinity. We have found that micromolar concentrations of dipentylammonium protect from glutamate toxicity and prevent NFκB activation in HT-22 cells. Micromolar concentrations of dipentylammonium also protect stably expressing amyloid precursor protein Swedish mutant (APP/Swe) Neuro2A cells from toxicity induced by 150 µM dopamine, suggesting that dipentylammonium may be useful for the treatment of Parkinsonian symptoms in Alzheimer's patients which are often associated with a more rapid deterioration of cognitive and physical ability. Finally, we found that low micromolar concentrations of dipentylammonium could out preform known sigma-1 receptor agonist PRE-084 in potentiating neurite outgrowth in Neuro2A cells, further suggesting that dipentylammonium has a potential use in the treatment of neurodegenerative diseases and could be acting through the sigma-1 receptor.


Subject(s)
Boronic Acids/pharmacology , Dopamine/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Glutamic Acid/pharmacology , Imidazoles/pharmacology , Neuronal Outgrowth/drug effects , Neuroprotective Agents/pharmacology , Receptors, sigma/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , L-Lactate Dehydrogenase/metabolism , NF-kappa B/metabolism , Neuroblastoma/pathology , Pentazocine/pharmacology , Protein Transport/drug effects , Radioligand Assay , Tritium/pharmacokinetics , Sigma-1 Receptor
11.
Biosci Rep ; 36(2)2016.
Article in English | MEDLINE | ID: mdl-26934981

ABSTRACT

The mechanisms for regulating PIKfyve complex activity are currently emerging. The PIKfyve complex, consisting of the phosphoinositide kinase PIKfyve (also known as FAB1), VAC14 and FIG4, is required for the production of phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. PIKfyve function is required for homoeostasis of the endo/lysosomal system and is crucially implicated in neuronal function and integrity, as loss of function mutations in the PIKfyve complex lead to neurodegeneration in mouse models and human patients. Our recent work has shown that the intracellular domain of the amyloid precursor protein (APP), a molecule central to the aetiology of Alzheimer's disease binds to VAC14 and enhances PIKfyve function. In the present study, we utilize this recent advance to create an easy-to-use tool for increasing PIKfyve activity in cells. We fused APP intracellular domain (AICD) to the HIV TAT domain, a cell-permeable peptide allowing proteins to penetrate cells. The resultant TAT-AICD fusion protein is cell permeable and triggers an increase in PI(3,5)P2 Using the PI(3,5)P2 specific GFP-ML1Nx2 probe, we show that cell-permeable AICD alters PI(3,5)P2 dynamics. TAT-AICD also provides partial protection from pharmacological inhibition of PIKfyve. All three lines of evidence show that the AICD activates the PIKfyve complex in cells, a finding that is important for our understanding of the mechanism of neurodegeneration in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor , Cell-Penetrating Peptides , Phosphatidylinositol 3-Kinases/metabolism , Recombinant Fusion Proteins , tat Gene Products, Human Immunodeficiency Virus , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/pharmacology , Animals , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
12.
FEBS Lett ; 587(21): 3464-70, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24021644

ABSTRACT

We illuminate the metabolism and the cell-signaling activities of inositol pyrophosphates, by showing that regulation of yeast cyclin-kinase by 1-InsP7 is not conserved for mammalian CDK5, and by kinetically characterizing Ddp1p/DIPP-mediated dephosphorylation of 1-InsP7, 5-InsP7 and InsP8. Each phosphatase exhibited similar Km values for every substrate (range: 35-148 nM). The rank order of kcat values (1-InsP7>5-InsP7=InsP8) was identical for each enzyme, although DIPP1 was 10- to 60-fold more active than DIPP2α/ß and DIPP3α/ß. We demonstrate InsP8 dephosphorylation preferentially progresses through 1-InsP7. Conversely, we conclude that the more metabolically and functionally significant steady-state route of InsP8 synthesis proceeds via 5-InsP7.


Subject(s)
Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/metabolism , Inositol Phosphates/metabolism , Humans , Kinetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
13.
Messenger (Los Angel) ; 1(2): 160-166, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-24749013

ABSTRACT

A potential extracellular target for inositol phosphates and analogues with anticancer properties is identified. Proteins from detergent-solubilised HeLa cell lysates bound to a novel affinity column of myo-inositol 1,3,4,5,6-pentakisphosphate (InsP5) coupled to Affigel-10. One high-affinity ligand was fibrinogen Bß. Inositol phosphates and analogues were able to elute purified fibrinogen from this matrix. InsP5 and the inositol phosphate mimic biphenyl 2,3',4,5',6-pentakisphosphate (BiPhP5) bind fibrinogen in vitro, and block the effects of fibrinogen in A549 cell-based assays of proliferation and migration. They are also able to prevent the fibrinogen-mediated activation of phosphatidylinositol 3-kinase. These effects of fibrinogen appear to be mediated through the intercellular adhesion molecule-1 (ICAM-1), as cells not expressing ICAM-1 fail to respond. In contrast, myo-inositol hexakisphosphate and the epimeric scyllo-inositol 1,2,3,4,5-pentakisphosphate were without effect. These findings are consistent with earlier reports that higher inositol phosphates have anticancer properties. This new mechanism of action and target for these extracellular inositol phosphates to have their effects allows a re-evaluation of earlier data.

14.
Int J Biochem Cell Biol ; 42(7): 1174-81, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20394834

ABSTRACT

Unlike mammalian cells, Drosophila melanogaster contains only a single member of the diphosphoinositol polyphosphate phosphohydrolase subfamily of the Nudix hydrolases, suggesting that functional specialisation has not occurred in this organism. In order to evaluate its function, Aps was cloned and characterized. It hydrolyses a range of (di)nucleoside polyphosphates, the most efficient being guanosine 5'-tetraphosphate (K(m)=11 microM, k(cat)=0.79 s(-1)). However, it shows a 5-fold preference for the hydrolysis of diphosphoinositol pentakisphosphate (PP-InsP(5), K(m)=0.07 microM, k(cat)=0.024 s(-1)). Assayed at 26 degrees C, Aps had an alkaline pH optimum and required a divalent ion: Mg(2+) (10-20 mM) or Mn(2+) (1 mM) were preferred for nucleotide hydrolysis and Mg(2+) (0.5-1 mM) or Co(2+) (1-100 microM) for PP-InsP(5) hydrolysis. GFP-fusions showed that Aps was predominantly cytoplasmic, with some nuclear localization. In the absence of dithiothreitol Aps was heat labile, rapidly losing activity even at 36 degrees C, while in the presence of dithiothreitol, Aps was heat stable, surviving for 5 min at 76 degrees C. Heat lability was restored by H(2)O(2) and mass spectrometric analysis suggested that this was due to reversible dimerisation involving two inter-molecular disulphides between Cys23 and Cys25. Aps expression was highest in embryos and declined throughout development. The ratio of PP-InsP(5) to inositol hexakisphosphate also decreased throughout development, with the highest level of PP-InsP(5) found in embryos. These data suggest that the redox state of Aps may play a role in controlling its activity by altering its stability, something that could be important for regulating PP-InsP(5) during development.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Pyrophosphatases/metabolism , Temperature , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/genetics , Adenine Nucleotides/metabolism , Amino Acid Sequence , Animals , Cations, Divalent/pharmacology , Chromatography, High Pressure Liquid , Dithiothreitol/pharmacology , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Enzyme Stability/drug effects , Gene Expression Regulation, Developmental/drug effects , Hydrogen-Ion Concentration/drug effects , Hydrolysis/drug effects , Inositol Phosphates/metabolism , Kinetics , Molecular Sequence Data , Oxidation-Reduction/drug effects , Protein Transport/drug effects , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Sequence Alignment , Subcellular Fractions/drug effects , Subcellular Fractions/enzymology , Substrate Specificity/drug effects , Nudix Hydrolases
15.
Chembiochem ; 9(11): 1757-66, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18574825

ABSTRACT

Novel benzene polyphosphates were synthesised as inositol polyphosphate mimics and evaluated against type-I inositol 1,4,5-trisphosphate 5-phosphatase, which only binds soluble inositol polyphosphates, and against the PH domain of protein kinase Balpha (PKBalpha), which can bind both soluble inositol polyphosphates and inositol phospholipids. The most potent trisphosphate 5-phosphatase inhibitor is benzene 1,2,4-trisphosphate (2, IC(50) of 14 microM), a potential mimic of D-myo-inositol 1,4,5-trisphosphate, whereas the most potent tetrakisphosphate Ins(1,4,5)P(3) 5-phosphatase inhibitor is benzene 1,2,4,5-tetrakisphosphate, with an IC(50) of 4 microM. Biphenyl 2,3',4,5',6-pentakisphosphate (4) was the most potent inhibitor evaluated against type I Ins(1,4,5)P(3) 5-phosphatase (IC(50) of 1 microM). All new benzene polyphosphates are resistant to dephosphorylation by type I Ins(1,4,5)P(3) 5-phosphatase. Unexpectedly, all benzene polyphosphates studied bind to the PH domain of PKBalpha with apparent higher affinity than to type I Ins(1,4,5)P(3) 5-phosphatase. The most potent ligand for the PKBalpha PH domain, measured by inhibition of biotinylated diC(8)-PtdIns(3,4)P(2) binding, is biphenyl 2,3',4,5',6-pentakisphosphate (4, K(i)=27 nm). The approximately 80-fold enhancement of binding relative to parent benzene trisphosphate is explained by the involvement of a cation-pi interaction. These new molecular tools will be of potential use in structural and cell signalling studies.


Subject(s)
Benzene/chemistry , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Polyphosphates/chemistry , Polyphosphates/pharmacology , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Binding Sites , Fluorescence Resonance Energy Transfer , Inositol Polyphosphate 5-Phosphatases , Ligands , Models, Molecular , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Polyphosphates/chemical synthesis , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship
16.
ACS Chem Biol ; 2(4): 242-6, 2007 Apr 24.
Article in English | MEDLINE | ID: mdl-17432822

ABSTRACT

Protein kinase B (PKB/Akt) plays a key role in cell signaling. The PH domain of PKB binds phosphatidylinositol 3,4,5-trisphosphate translocating PKB to the plasma membrane for activation by 3-phosphoinositide-dependent protein kinase 1. The crystal structure of the headgroup inositol 1,3,4,5-tetrakisphosphate Ins(1,3,4,5)P4-PKB complex facilitates in silico ligand design. The novel achiral analogue benzene 1,2,3,4-tetrakisphosphate (Bz(1,2,3,4)P4) possesses phosphate regiochemistry different from that of Ins(1,3,4,5)P4 and surprisingly binds with similar affinity as the natural headgroup. Bz(1,2,3,4)P4 co-crystallizes with the PKBalpha PH domain in a fashion also predictable in silico. The 2-phosphate of Bz(1,2,3,4)P4 does not interact with any residue, and the D5-phosphate of Ins(1,3,4,5)P4 is not mimicked by Bz(1,2,3,4)P4. Bz(1,2,3,4)P4 is an example of a simple inositol phosphate surrogate crystallized in a protein, and this approach could be applied to design modulators of inositol polyphosphate binding proteins.


Subject(s)
Phosphatidylinositol Phosphates/metabolism , Proto-Oncogene Proteins c-akt/chemistry , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Organophosphates/chemistry , Organophosphates/metabolism , Protein Structure, Tertiary/physiology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors
17.
Cell Signal ; 19(7): 1521-30, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17346927

ABSTRACT

The Protein Tyrosine Phosphatase (PTP) family comprises a large and diverse group of enzymes, regulating a range of biological processes through de-phosphorylation of many proteins and lipids. These enzymes share a catalytic mechanism that requires a reduced and reactive cysteine nucleophile, making them potentially sensitive to inactivation and regulation by oxidation. Analysis of ten PTPs identified substantial differences in the sensitivity of these enzymes to oxidation in vitro. More detailed experiments confirmed the following rank order of sensitivity: PTEN and Sac1>PTPL1/FAP-1>>myotubularins. When the apparent sensitivity to oxidation of these PTPs in cells treated with hydrogen peroxide was analysed, this correlated well with the observed sensitivities to oxidation in vitro. These data suggested that different PTPs may fall into at least three different classes with respect to mechanisms of cellular redox regulation. 1. PTEN and Sac1 were readily and reversibly oxidised in vitro and in cells treated with hydrogen peroxide 2. PTPL1 appeared to be resistant to oxidation in cells, correlating with its sensitivity to reduction by glutathione in vitro 3. The myotubularin family of lipid phosphatases was almost completely resistant to oxidation in vitro and in cells. Our results show that sensitivity to reversible oxidation is not a necessary characteristic of the PTPs and imply that such sensitivity has evolved as a regulatory mechanism for some of this large family, but not others.


Subject(s)
Multigene Family , Protein Tyrosine Phosphatases/metabolism , Animals , Cell Line , Glutathione/metabolism , Humans , Hydrogen Peroxide/pharmacology , Immunoprecipitation , Kinetics , Mice , Oxidation-Reduction/drug effects , Phosphatidylinositols/metabolism , Protein Tyrosine Phosphatases/isolation & purification , Recombinant Fusion Proteins/metabolism
18.
Int J Biochem Cell Biol ; 39(5): 943-54, 2007.
Article in English | MEDLINE | ID: mdl-17344088

ABSTRACT

The intracellular functions of diadenosine polyphosphates are still poorly defined. To understand these better, we have expressed and characterized a heat stable, 16.6kDa Nudix hydrolase (Apf) that specifically metabolizes these nucleotides from a Drosophila melanogaster cDNA. Apf always produces an NTP product, with substrate preference depending on pH and divalent ion (Zn(2+) or Mg(2+)). For example, diadenosine tetraphosphate is hydrolysed to ATP and AMP with K(m), k(cat) and k(cat)/K(m) values 9microM, 43s(-1) and 4.8microM(-1)s(-1) (pH 6.5, 0.1mMZn(2+)) and 12microM, 13s(-1) and 1.1microM(-1)s(-1) (pH 7.5, 20mMMg(2+)), respectively. However, diadenosine hexaphosphate is efficiently hydrolysed to ATP only at pH 7.5 with 20mMMg(2+) (K(m), k(cat) and k(cat)/K(m) values of 15microM 4.0s(-1), and 0.27microM(-1)s(-1)). Fluoride potently inhibits diadenosine tetraphosphate hydrolysis in the presence of Mg(2+) (IC(50)=20microM), whereas it is ineffective in the presence of Zn(2+), supporting the view that inhibition involves a specific, MgF(3)(-)-containing transition state analogue complex. Patterns of Apf expression in Drosophila tissues show Apf mRNA levels to be highest in embryos and adult females. Subcellular localization with Apf-EGFP fusion constructs reveals Apf to be predominantly nuclear, having an apparent preferential association with euchromatin and facultative heterochromatin. This supports a nuclear function for diadenosine tetraphosphate. Our results show Apf to be a fairly typical member of the bis (5'-nucleosyl)-tetraphosphatase subfamily of Nudix hydrolases with features that distinguish it from a previously reported bis (5'-nucleosyl)-tetraphosphatase hydrolase activity from Drosophila embryos.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Pyrophosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Nucleus/metabolism , Dinucleoside Phosphates/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Enzyme Activation/drug effects , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hydrogen-Ion Concentration , Hydrolysis/drug effects , Kinetics , Magnesium/pharmacology , Microscopy, Fluorescence , Molecular Sequence Data , Pyrophosphatases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Temperature , Zinc/pharmacology , Nudix Hydrolases
19.
EMBO J ; 23(20): 3918-28, 2004 Oct 13.
Article in English | MEDLINE | ID: mdl-15457207

ABSTRACT

3-phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates and activates many kinases belonging to the AGC subfamily. PDK1 possesses a C-terminal pleckstrin homology (PH) domain that interacts with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and with lower affinity to PtdIns(4,5)P2. We describe the crystal structure of the PDK1 PH domain, in the absence and presence of PtdIns(3,4,5)P3 and Ins(1,3,4,5)P4. The structures reveal a 'budded' PH domain fold, possessing an N-terminal extension forming an integral part of the overall fold, and display an unusually spacious ligand-binding site. Mutagenesis and lipid-binding studies were used to define the contribution of residues involved in phosphoinositide binding. Using a novel quantitative binding assay, we found that Ins(1,3,4,5,6)P5 and InsP6, which are present at micromolar levels in the cytosol, interact with full-length PDK1 with nanomolar affinities. Utilising the isolated PDK1 PH domain, which has reduced affinity for Ins(1,3,4,5,6)P5/InsP6, we perform localisation studies that suggest that these inositol phosphates serve to anchor a portion of cellular PDK1 in the cytosol, where it could activate its substrates such as p70 S6-kinase and p90 ribosomal S6 kinase that do not interact with phosphoinositides.


Subject(s)
Inositol Phosphates/metabolism , Phosphatidylinositols/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , 3-Phosphoinositide-Dependent Protein Kinases , Amino Acid Sequence , Binding Sites , Binding, Competitive , Cell Line , Crystallography, X-Ray , Cytosol/chemistry , Cytosol/metabolism , Fluorescence Resonance Energy Transfer , Glutathione Transferase/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Lipid Metabolism , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Spectrum Analysis, Raman , Water/chemistry
20.
Cancer Res ; 64(14): 4875-86, 2004 Jul 15.
Article in English | MEDLINE | ID: mdl-15256458

ABSTRACT

The acquisition of resistance to apoptosis, the cell's intrinsic suicide program, is essential for cancers to arise and progress and is a major reason behind treatment failures. We show in this article that small molecule antagonists of the sigma-1 receptor inhibit tumor cell survival to reveal caspase-dependent apoptosis. sigma antagonist-mediated caspase activation and cell death are substantially attenuated by the prototypic sigma-1 agonists (+)-SKF10,047 and (+)-pentazocine. Although several normal cell types such as fibroblasts, epithelial cells, and even sigma receptor-rich neurons are resistant to the apoptotic effects of sigma antagonists, cells that can promote autocrine survival such as lens epithelial and microvascular endothelial cells are as susceptible as tumor cells. Cellular susceptibility appears to correlate with differences in sigma receptor coupling rather than levels of expression. In susceptible cells only, sigma antagonists evoke a rapid rise in cytosolic calcium that is inhibited by sigma-1 agonists. In at least some tumor cells, sigma antagonists cause calcium-dependent activation of phospholipase C and concomitant calcium-independent inhibition of phosphatidylinositol 3'-kinase pathway signaling. Systemic administration of sigma antagonists significantly inhibits the growth of evolving and established hormone-sensitive and hormone-insensitive mammary carcinoma xenografts, orthotopic prostate tumors, and p53-null lung carcinoma xenografts in immunocompromised mice in the absence of side effects. Release of a sigma receptor-mediated brake on apoptosis may offer a new approach to cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Receptors, sigma/antagonists & inhibitors , Animals , Apoptosis/physiology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Calcium Signaling/drug effects , Carbazoles/pharmacology , Caspases/metabolism , Cattle , Cell Division/drug effects , Cell Division/physiology , Cell Line, Tumor , Enzyme Activation , Ethylenediamines/pharmacology , Haloperidol/pharmacology , Humans , Isoenzymes/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , Phospholipase C delta , Piperazines/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-akt , Type C Phospholipases/metabolism , Xenograft Model Antitumor Assays , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...