Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Carbohydr Polym ; 208: 32-41, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30658806

ABSTRACT

Polysialic acid (polySia) is a linear carbohydrate polymer consisting of N-acetylneuraminic acid residues and is involved in several physiological processes. In the present study, we identified the multifunctional protein lactoferrin as a novel interaction partner for polySia. Lactoferrin co-precipitated when polySia was isolated from human blood, milk, and semen samples. The interaction between polySia and lactoferrin was verified using a native gel electrophoresis application, demonstrating that such interaction depends on the degree of polymerization. The interaction between the molecules could be inhibited by an antibody against lactoferricin (LFcin), which suggests that the LFcin domain of lactoferrin represents the potential binding area for sialic acid polymers. Because lactoferrin inhibits the formation of neutrophil extracellular traps (NETs), the potential impact of polySia on this function of lactoferrin was tested. Intriguingly, we observed that polySia increases the efficiency of lactoferrin to prevent the release of NET fibers. PolySia alone shows no activity. Therefore, together with lactoferrin, polySia may represent a natural regulatory system of NET release.

2.
Int J Mol Sci ; 19(6)2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29874880

ABSTRACT

The innate immune system has numerous mechanisms to fight against pathogens, including the formation of neutrophil extracellular traps (NETs). By spreading out chromatin, antimicrobial peptides and enzymes, neutrophils efficiently trap pathogens like bacteria and facilitate their elimination. During this process, high concentrations of extracellular histones can be reached. Several researchers have demonstrated that the cytotoxic characteristics of these histones can trigger diseases like sepsis. Interestingly, the carbohydrate polysialic acid (polySia) can bind histones and reduce histone-mediated cytotoxicity in a chain length-dependent manner. In the present study, we examined the chain length of polySia in plasma and tested its ability to decrease the cytotoxic characteristics of extracellular histones. Remarkably, we detected polySia not only in the soluble fraction of plasma, but also on enriched extracellular vesicles (EVs). Chain length analysis revealed that polySia chains originating from human plasma can consists of more than 40 sialic acid residues and show a cytoprotective effect against extracellular histones. Intriguingly, polySia is not only present in human plasma but also in fish and other branches of vertebrates. Thus, polySia is a physiological element in plasma and may represent a natural buffer for extracellular histones.


Subject(s)
Cytotoxicity, Immunologic/genetics , Histones/immunology , Sepsis/metabolism , Sialic Acids/metabolism , Carbohydrates/chemistry , Extracellular Traps/metabolism , Histones/adverse effects , Histones/biosynthesis , Humans , Immunity, Innate/genetics , Neutrophils/immunology , Neutrophils/metabolism , Sepsis/etiology , Sepsis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...