Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 29014, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27364357

ABSTRACT

Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24-72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints.


Subject(s)
Bacteria/chemistry , Body Fluids/microbiology , Spectrum Analysis, Raman , Antibodies, Bacterial/immunology , Bacteria/isolation & purification , Escherichia coli/chemistry , Escherichia coli/immunology , Escherichia coli/isolation & purification , Humans , Metal Nanoparticles/chemistry , Microfluidics/methods , Microscopy, Electron, Transmission , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/isolation & purification , Silver/chemistry , Streptococcus/chemistry , Streptococcus/immunology , Streptococcus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...