Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885450

ABSTRACT

A circular economy requires closed circuits of consumed resources. Construction generates approximately 50% of solid waste globally, which is difficult to manage. The aim of this article was to identify the factors that determine the development of circular construction in the context of waste minimisation in the life cycle of building structures. The identification of cause-and-effect relationships by means of the DEMATEL method allows the problems of construction waste management to be taken into account in the context of the development of sustainable construction and fulfilling the principles of the circular economy.

2.
Sensors (Basel) ; 19(16)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394738

ABSTRACT

Water resources on Earth become one of the main concerns for society. Therefore, remote sensing methods are still under development in order to improve the picture of the global water cycle. In this context, the microwave bands are the most suitable to study land-water resources. The Soil Moisture and Ocean Salinity (SMOS), satellite mission of the European Space Agency (ESA), is dedicated for studies of the water in soil over land and salinity of oceans. The part of calibration/validation activities in order to improve soil moisture retrieval algorithms over land is done with ground-based passive radiometers. The European Space Agency L-band Microwave Radiometer (ELBARA III) located near the Bubnów wetland in Poland is capable of mapping microwave emissivity at the local scale, due to the azimuthal and vertical movement of the horn antenna. In this paper, we present results of the spatio-temporal mapping of the brightness temperatures on the heterogeneous area of the Bubnów test-site consisting of an area with variable organic matter (OM) content and different type of vegetation. The soil moisture (SM) was retrieved with the L-band microwave emission of the biosphere (L-MEB) model with simplified roughness parametrization (SRP) coupling roughness and optical depth parameters. Estimated soil moisture values were compared with in-situ data from the automatic agrometeorological station. The results show that on the areas with a relatively low OM content (4-6%-cultivated field) there was good agreement between measured and estimated SM values. Further increase in OM content, starting from approximately 6% (meadow wetland), caused an increase in bias, root mean square error (RMSE), and unbiased RMSE (ubRMSE) values and a general drop in correlation coefficient (R). Despite a span of obtained R values, we found that time-averaged estimated SM using the L-MEB SRP approach strongly correlated with OM contents.

3.
Environ Sci Pollut Res Int ; 26(4): 3980-3990, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30552610

ABSTRACT

The development of concrete technology results in a new generation of cement-based concrete such as high-performance concrete, self-compacting concrete and high-performance, self-compacting concrete. These concretes are characterised by better parameters not only in terms of strength and durability but also rheology of the mixtures. Obtaining such properties requires the adoption of a different composition and proportion of ingredients than ordinary concrete. The greater share of cement in these concretes causes an increase in the energy consumption and emissions (per unit of concrete volume) at the production stage. However, use of new generation concrete allows for a reduction of overall dimensions of a structural element, due to the increased strength parameters. Such a solution may finally result in lower consumption of resources and energy, as well as a decrease of gas emissions. The article presents the results of a comparative environmental analysis of ordinary and new generation concrete structures.


Subject(s)
Construction Industry/methods , Construction Materials , Environment , Construction Materials/analysis
4.
Sci Rep ; 6: 32780, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27620838

ABSTRACT

Amphotericin B is a popular antifungal antibiotic, a gold standard in treatment of systemic mycotic infections, due to its high effectiveness. On the other hand, applicability of the drug is limited by its considerable toxicity to patients. Biomembranes are a primary target of physiological activity of amphotericin B and both the pharmacologically desired and toxic side effects of the drug relay on its molecular organization in the lipid phase. In the present work, molecular organization, localization and orientation of amphotericin B, in a single lipid bilayer system, was analysed simultaneously, thanks to application of a confocal fluorescence lifetime imaging microscopy of giant unilamellar vesicles. The results show that the presence of sterols, in the lipid phase, promotes formation of supramolecular structures of amphotericin B and their penetration into the membrane hydrophobic core. The fact that such an effect is substantially less pronounced in the case of cholesterol than ergosterol, the sterol of fungal membranes, provides molecular insight into the selectivity of the drug.


Subject(s)
Amphotericin B/chemistry , Antifungal Agents/chemistry , Ergosterol/chemistry , Lipid Bilayers/chemistry , Anisotropy , Cholesterol/chemistry , Hydrophobic and Hydrophilic Interactions , Lipids/chemistry , Liposomes/chemistry , Membranes, Artificial , Microscopy, Confocal , Microscopy, Fluorescence , Models, Theoretical , Spectrophotometry , Sterols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...