Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Care ; 19: 415, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26612199

ABSTRACT

INTRODUCTION: Sepsis is an exaggerated and dysfunctional immune response to infection. Activation of innate immunity recognition systems including complement and the Toll-like receptor family initiate this disproportionate inflammatory response. The aim of this study was to explore the effect of combined inhibition of the complement component C5 and the Toll-like receptor co-factor CD14 on survival, hemodynamic parameters and systemic inflammation including complement activation in a clinically relevant porcine model of polymicrobial sepsis. METHODS: Norwegian landrace piglets (4 ± 0.5 kg) were blindly randomized to a treatment group (n = 12) receiving the C5 inhibitor coversin (OmCI) and anti-CD14 or to a positive control group (n = 12) receiving saline. Under anesthesia, sepsis was induced by a 2 cm cecal incision and the piglets were monitored in standard intensive care for 8 hours. Three sham piglets had a laparotomy without cecal incision or treatment. Complement activation was measured as sC5b-9 using enzyme immunoassay. Cytokines were measured with multiplex technology. RESULTS: Combined C5 and CD14 inhibition significantly improved survival (p = 0.03). Nine piglets survived in the treatment group and four in the control group. The treatment group had significantly lower pulmonary artery pressure (p = 0.04) and ratio of pulmonary artery pressure to systemic artery pressure (p < 0.001). Plasma sC5b-9 levels were significantly lower in the treatment group (p < 0.001) and correlated significantly with mortality (p = 0.006). IL-8 and IL-10 were significantly (p < 0.05) lower in the treatment group. CONCLUSIONS: Combined inhibition of C5 and CD14 significantly improved survival, hemodynamic parameters and inflammation in a blinded, randomized trial of porcine polymicrobial sepsis.


Subject(s)
Complement C5/antagonists & inhibitors , Lipopolysaccharide Receptors/metabolism , Sepsis/drug therapy , Toll-Like Receptors/immunology , Animals , Inflammation/blood , Inflammation/mortality , Sepsis/metabolism , Sepsis/microbiology , Sepsis/mortality , Swine , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...