Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 164: 731-741, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37032243

ABSTRACT

In domain adaptation, when there is a large distance between the source and target domains, the prediction performance will degrade. Gradual domain adaptation is one of the solutions to such an issue, assuming that we have access to intermediate domains, which shift gradually from the source to the target domain. In previous works, it was assumed that the number of samples in the intermediate domains was sufficiently large; hence, self-training was possible without the need for labeled data. If the number of accessible intermediate domains is restricted, the distances between domains become large, and self-training will fail. Practically, the cost of samples in intermediate domains will vary, and it is natural to consider that the closer an intermediate domain is to the target domain, the higher the cost of obtaining samples from the intermediate domain is. To solve the trade-off between cost and accuracy, we propose a framework that combines multifidelity and active domain adaptation. The effectiveness of the proposed method is evaluated by experiments with real-world datasets.


Subject(s)
Cost-Benefit Analysis
2.
ChemSusChem ; 10(9): 1909-1915, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28322007

ABSTRACT

We report herein a new molecular catalyst for efficient water splitting, aluminum porphyrins (tetra-methylpyridiniumylporphyrinatealuminum: AlTMPyP), containing earth's most abundant metal as the central ion. One-electron oxidation of the aluminum porphyrin initiates the two-electron oxidation of water to form hydrogen peroxide as the primary reaction product with the lowest known overpotential (97 mV). The aluminum-peroxo complex was detected by a cold-spray ionization mass-spectrometry in high-resolution MS (HRMS) mode and the structure of the intermediate species was further confirmed using laser Raman spectroscopy, indicating the hydroperoxy complex of AlTMPyP to be the key intermediate in the reaction. The two-electron oxidation of water to form hydrogen peroxide was essentially quantitative, with a Faradaic efficiency of 99 %. The catalytic reaction was found to be highly efficient, with a turnover frequency up to ∼2×104  s-1 . A reaction mechanism is proposed involving oxygen-oxygen bond formation by the attack of a hydroxide ion on the oxyl-radical-like axial ligand oxygen atom in the one-electron-oxidized form of AlTMPyP(O- )2 , followed by a second electron transfer to the electrode.


Subject(s)
Aluminum/chemistry , Electrons , Hydrogen Peroxide/chemical synthesis , Porphyrins/chemistry , Water/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Molecular Structure , Oxidation-Reduction , Spectrometry, Mass, Electrospray Ionization , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...