Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Dokl Biochem Biophys ; 464: 341-5, 2015.
Article in English | MEDLINE | ID: mdl-26518564

ABSTRACT

The ability of SkQ1 eye drops to slow down the cataract development is demonstrated on the senescence-accelerated OXYS rats: the SkQ1 treatment leads to the considerable improvement of the lens condition as compared to the control group. The comparison of the chaperone activities of α-crystallins isolated from the rat lenses did not reveal significant difference between SkQ1-treated and control rats. The contents of major metabolites (23 compounds) in lenses of SkQ1-treated and untreated rats are also very similar, though the concentration of reduced glutathione (GSH) in lenses of SkQ1-treated rats is 12% lower. This difference may be attributed to the reduction of the oxidative stress under action of SkQ1 eye drops, and to the decreased requirement to produce high amounts of this antioxidant.


Subject(s)
Cataract/drug therapy , Cataract/metabolism , Free Radical Scavengers/administration & dosage , Plastoquinone/analogs & derivatives , alpha-Crystallins/metabolism , Aging/drug effects , Aging/metabolism , Animals , Disease Models, Animal , Glutathione/metabolism , Kinetics , Lens, Crystalline/drug effects , Lens, Crystalline/metabolism , Ophthalmic Solutions , Oxidative Stress/drug effects , Oxidative Stress/physiology , Plastoquinone/administration & dosage , Protein Multimerization , Rats , beta-Crystallins/metabolism
3.
Icarus ; 255: 100-115, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-28798496

ABSTRACT

The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.

4.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25143031

ABSTRACT

Inhalation of air-dispersed sub-micrometre and nano-sized particles presents a risk factor for animal and human health. Here, we show that nasal aerodynamics plays a pivotal role in the protection of the subterranean mole vole Ellobius talpinus from an increased exposure to nano-aerosols. Quantitative simulation of particle flow has shown that their deposition on the total surface of the nasal cavity is higher in the mole vole than in a terrestrial rodent Mus musculus (mouse), but lower on the olfactory epithelium. In agreement with simulation results, we found a reduced accumulation of manganese in olfactory bulbs of mole voles in comparison with mice after the inhalation of nano-sized MnCl2 aerosols. We ruled out the possibility that this reduction is owing to a lower transportation from epithelium to brain in the mole vole as intranasal instillations of MnCl2 solution and hydrated nanoparticles of manganese oxide MnO · (H2O)x revealed similar uptake rates for both species. Together, we conclude that nasal geometry contributes to the protection of brain and lung from accumulation of air-dispersed particles in mole voles.


Subject(s)
Arvicolinae/anatomy & histology , Dust , Nasal Cavity/anatomy & histology , Particulate Matter/analysis , Aerosols , Animals , Brain , Inhalation Exposure , Lung , Mice/anatomy & histology , Models, Anatomic , Nanoparticles , Nasal Cavity/physiology
5.
Zh Obshch Biol ; 75(3): 214-25, 2014.
Article in Russian | MEDLINE | ID: mdl-25771679

ABSTRACT

In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones.


Subject(s)
Adaptation, Physiological , Behavior, Animal , Dust , Nasal Cavity , Olfactory Mucosa , Respiration , Air Pollutants/adverse effects , Air Pollutants/pharmacology , Animals , Arvicolinae , Mice , Nasal Cavity/pathology , Nasal Cavity/physiopathology , Olfactory Mucosa/pathology , Olfactory Mucosa/physiopathology
6.
Astrophys J ; 768(1)2013 May 01.
Article in English | MEDLINE | ID: mdl-34646037

ABSTRACT

Supernova remnants (SNRs), as the major contributors to the galactic cosmic rays (CRs), are believed to maintain an average CR spectrum by diffusive shock acceleration regardless of the way they release CRs into the interstellar medium (ISM). However, the interaction of the CRs with nearby gas clouds crucially depends on the release mechanism. We call into question two aspects of a popular paradigm of the CR injection into the ISM, according to which they passively and isotropically diffuse in the prescribed magnetic fluctuations as test particles. First, we treat the escaping CR and the Alfvén waves excited by them on an equal footing. Second, we adopt field-aligned CR escape outside the source, where the waves become weak. An exact analytic self-similar solution for a CR "cloud" released by a dimmed accelerator strongly deviates from the test-particle result. The normalized CR partial pressure may be approximated as P ( p , z , t ) = 2 [ | z | 5 / 3 + z dif 5 / 3 ( p , t ) ] - 3 / 5  exp [ - z 2 / 4 D ISM ( p ) t ] , where p is the momentum of CR particle, and z is directed along the field. The core of the cloud expands as z dif ∝ D NL ( p ) t and decays in time as P ∝ 2 z dif - 1 ( t ) . The diffusion coefficient D NL is strongly suppressed compared to its background ISM value D ISM: D NL ~ D ISM exp (-Π) ≪ D ISM for sufficiently high field-line-integrated CR partial pressure, Π. When Π â‰« 1, the CRs drive Alfvén waves efficiently enough to build a transport barrier ( P ≈ 2 / | z | - "  pedestal " ) that strongly reduces the leakage. The solution has a spectral break at p = p br, where p br satisfies the equation D NL ( p br ) ≃ z 2 / t .

7.
Phys Rev Lett ; 108(8): 081104, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463513

ABSTRACT

The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants must hinge on the full consistency of acceleration theory with the observations; direct proof is impossible because of CR-orbit scrambling. Recent observations indicate deviations between helium and proton CR rigidity spectra inconsistent with the theory. By considering an initial (injection) phase of the diffusive shock acceleration, where elemental similarity does not apply, we demonstrate that the spectral difference is, in fact, a unique signature of the acceleration mechanism. Collisionless shocks inject more He(2+) when they are stronger and so produce harder He(2+) spectra. The injection bias is due to Alfvén waves driven by the more abundant protons, so the He(2+) ions are harder to trap by these waves. By fitting the p/He ratio to the PAMELA data, we bolster the diffusive shock acceleration case for resolving the century-old mystery of CR origin.

8.
Dokl Biochem Biophys ; 447: 300-3, 2012.
Article in English | MEDLINE | ID: mdl-23288574

ABSTRACT

Supplementation of senescence-accelerated OXYS rats with the mitochondria-targeted antioxidant SkQ1 and with the powder from Cistanche deserticola results in the deceleration of the cataract development and even in the improvement of lens transparency. The therapeutic effect of these preparations correlates with a significant elevation of tryptophan and kynurenine levels in the lens. This finding is attributed to a deceleration of the tryptophan and kynurenine oxidation due to antioxidant-assisted reduction of oxidative stress in the lens.


Subject(s)
Cataract/metabolism , Drugs, Chinese Herbal/therapeutic use , Kynurenine/metabolism , Lens, Crystalline/metabolism , Mitochondria/drug effects , Plastoquinone/analogs & derivatives , Tryptophan/metabolism , Animals , Antioxidants/therapeutic use , Cataract/pathology , Cataract/prevention & control , Cistanche , Lens, Crystalline/drug effects , Lens, Crystalline/pathology , Plastoquinone/administration & dosage , Plastoquinone/therapeutic use , Rats , Rats, Wistar , Treatment Outcome
9.
Nat Commun ; 2: 194, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21326226

ABSTRACT

Recent observations of supernova remnant W44 by the Fermi spacecraft observatory support the idea that the bulk of galactic cosmic rays is accelerated in such remnants by a Fermi mechanism, also known as diffusive shock acceleration. However, the W44 expands into weakly ionized dense gas, and so a significant revision of the mechanism is required. Here, we provide the necessary modifications and demonstrate that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by exactly one power. The spectral break is caused by Alfven wave evanescence leading to the fractional particle losses. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is calculated and successfully fitted to the Fermi Observatory data. The parent proton spectrum is best represented by a classical test particle power law ∝E(-2), steepening to E(-3) at E(br)≈7 GeV due to deteriorated particle confinement.


Subject(s)
Acceleration , Cosmic Radiation , Models, Theoretical , Protons , Stars, Celestial/chemistry , Astronomy
10.
J Magn Reson ; 196(2): 164-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19091610

ABSTRACT

The generating functions (GF) formalism was applied for calculation of spin density matrix evolution under the influence of periodic trains of RF pulses. It was shown that in a general case, closed expression for the generating function can be found that allows in many cases to derive analytical expressions for the generating function of spin density matrix (magnetization, coherences). This approach was shown to be particularly efficient for the analysis of multi-echo sequences, where one has to average over various frequency isochromats. The explicit analytical expressions for the generating function for echo amplitudes in a Carr-Purcell-Meiboom-Gill (CPMG) echo sequence, a multiecho sequence with incremental phase of refocusing pulse, a gradient echo sequence including transient period were obtained for an arbitrary flip angle and an arbitrary resonance offset. Comparison of the theory and the spin-echo experiments was done, demonstrating a good agreement.


Subject(s)
Magnetic Resonance Imaging/methods , Radio Waves , Algorithms , Image Enhancement , Image Processing, Computer-Assisted , Kinetics , Models, Theoretical , Signal Processing, Computer-Assisted , Spin Labels , Tomography, Optical Coherence
11.
Astrobiology ; 8(4): 793-804, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18844457

ABSTRACT

The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.


Subject(s)
Moon , Neutrons , Cold Temperature , Equipment Design , Extraterrestrial Environment , Hydrogen , Ice , Models, Theoretical , Space Flight/instrumentation , Spacecraft/instrumentation , United States , United States National Aeronautics and Space Administration
12.
J Photochem Photobiol B ; 93(3): 127-32, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-18771932

ABSTRACT

Quantum yields of photodecomposition and triplet state formation under aerobic and anaerobic conditions are determined for kynurenine (KN), 3-hydroxykynurenine (3OHKN), xanthurenic acid (XAN), and kynurenine adducts of glutathione (GSH-KN), cysteine (Cys-KN), histidine (His-KN), and lysine (Lys-KN) in aqueous solutions. The highest yields of anaerobic photodecomposition were obtained for GSH-KN and His-KN adducts, which correlates with the highest triplet yields for these compounds. In aerobic conditions, the photodecomposition yields for all compounds under study increase; the highest decomposition rates were observed for His-KN and 3OHKN. The fast decomposition of the latter is attributed to the dark autoxidation of the starting compound.


Subject(s)
Kynurenine/radiation effects , Photolysis , Ultraviolet Rays , Anaerobiosis , Cysteine/chemistry , Cysteine/radiation effects , Glutathione/chemistry , Glutathione/radiation effects , Histidine/chemistry , Histidine/radiation effects , Kynurenine/chemistry , Quantum Theory , Scattering, Radiation , Time Factors
13.
J Chem Phys ; 125(14): 144511, 2006 Oct 14.
Article in English | MEDLINE | ID: mdl-17042613

ABSTRACT

The quantum yield of photoionization of TrpH and IndH from the nonrelaxed prefluorescent state S* increases with the temperature decrease. This effect is attributed to the competition between temperature independent ionization and ultrafast thermal relaxation S* --> S1. The rate constant of the relaxation does not depend on the solvent and on the presence of the amino acid side chain: the temperature dependences of photoionization quantum yield, obtained for TrpH and IndH in different solvents, practically coincide. The activation energy for the relaxation rate constant Er approximately 4.5 kJ/mol probably corresponds to intramolecular process or to the formation of the vibronically excited transient complex between photoexcited molecule and solvent molecules.


Subject(s)
Fluorescence , Indoles/chemistry , Models, Chemical , Tryptophan/chemistry , Photolysis
14.
Phys Rev Lett ; 95(12): 129501; discussion 129502, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197120
15.
Magn Reson Imaging ; 21(3-4): 337-43, 2003.
Article in English | MEDLINE | ID: mdl-12850729

ABSTRACT

PFG NMR is employed to perform a comparative study of the filtration of water and propane through model porous media. It is shown that the dispersion coefficients for water are dominated by the holdup effects even in a bed of nonporous glass beads. It is demonstrated that correlation experiments such as VEXSY are applicable to gas flow despite the large diffusivity values of gases. The PFG NMR technique is applied to study the gravity driven flow of liquid-containing fine solid particles through a porous bed. The NMR imaging technique is employed to visualize the propagation of autocatalytic waves for the Belousov-Zhabotinsky reaction which is carried out in a model porous medium. It is demonstrated that the wave propagation velocity decreases as the wave crosses the boundary between the bulk liquid and the flooded bead pack. The images detected during the catalytic hydrogenation of alpha-methylstyrene on a single catalyst pellet at elevated temperatures have revealed that the reaction and the accompanying phase transition alter the distribution of the liquid phase within the pellet.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Styrenes/chemistry , Glass , Porosity , Propane , Temperature , Water
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 58(9): 2043-50, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12164501

ABSTRACT

Chemical reactions between the photoexcited triplet state of flavin mononucleotide and the aromatic amino acids, N-acetyl tryptophan (TrpH), N-acetyl tyrosine (TyrOH), and N-acetyl histidine (HisH) in aqueous solution have been studied in the pH range 2-12. Across the whole pH range, the principal mechanism of reaction of both TrpH and TyrOH is shown to be electron transfer. For HisH, the mechanism and rate of the reaction depend on the protonation state of the reactants. In acidic conditions (pH < 4), reaction does not occur. At 4 < pH < 11, the reaction proceeds via hydrogen atom abstraction with a rate constant varying from 3.0 x 10(6) to 2.5 x 10(8) M(-1) s(-1). In extremely basic solution (pH > 12) the mechanism switches to electron transfer.


Subject(s)
Amino Acids, Aromatic/chemistry , Flavin Mononucleotide/chemistry , Hydrogen-Ion Concentration , Kinetics , Magnetic Resonance Spectroscopy
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(3 Pt 2A): 035401, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11909154

ABSTRACT

We show that a magnetic shock whose initial density and/or magnetic perturbation exceeds the Hugoniot limit may lead to substantial and rapid energy release in low beta plasmas (such as occur in the magnetospheres of neutron stars). We illustrate this effect for a fast Magnetohydrodynamic perturbation, as well as for large density perturbations which can be naturally created in low beta plasmas. Using the Riemann solution and simulations, we show that slow modes of finite magnitudes and Alfvénic perturbations can generate strong density perturbations. These perturbations develop into shocks, resulting in efficient energy release.

18.
Magn Reson Imaging ; 19(3-4): 531-4, 2001.
Article in English | MEDLINE | ID: mdl-11445349

ABSTRACT

NMR imaging is employed to study the preparation of supported catalysts and a number of mass transport processes in porous catalysts and sorbents. It is shown that, similar to Pt, adsorbed Pd leads to the increase of the relaxation times of liquids permeating porous alumina supports. A faster penetration of adsorbed water into the sorbent is observed when water vapor sorption by selective water sorbents is carried out under vacuum as compared to the sorption from moist air. An interruption of the capillary flow of water within the monolithic catalyst is shown to lead to a non-uniform drying along the monolith channels. Flow imaging of water inflowing into the monolith has revealed a complicated flow pattern characterized by the existence of counterflows in the entrance region.


Subject(s)
Magnetic Resonance Imaging/methods , Acetylene/chemistry , Aluminum Oxide/chemistry , Butanes/chemistry , Calcium Chloride/chemistry , Catalysis , Porosity , Propane/chemistry , Silica Gel , Silicon Dioxide/chemistry
19.
Science ; 291(5509): 1663, 2001 Mar 02.
Article in English | MEDLINE | ID: mdl-11249808
20.
Magn Reson Med ; 33(6): 832-7, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7651121

ABSTRACT

An image postprocessing technique that is based on the relaxation properties of tissues and that can produce MR images with increased contrast is proposed. The technique involves no a priori assumptions concerning the form of the relaxation decay. An arbitrary number of postprocessed images, each emphasizing a selected tissue type, is obtained from the original images of a multiecho acquisition. It is shown with examples that the technique allows more complete utilization of relaxation information for tissue differentiation.


Subject(s)
Image Enhancement/methods , Magnetic Resonance Imaging/methods , Brain/anatomy & histology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...