Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Future Med Chem ; 16(7): 587-599, 2024 04.
Article in English | MEDLINE | ID: mdl-38372202

ABSTRACT

Background: To prioritize compounds with a higher likelihood of success, artificial intelligence models can be used to predict absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of molecules quickly and efficiently. Methods: Models were trained with BioPrint database proprietary data along with public datasets to predict various ADMET end points for the SAFIRE platform. Results: SAFIRE models performed at or above 75% accuracy and 0.4 Matthew's correlation coefficient with validation sets. Training with both proprietary and public data improved model performance and expanded the chemical space on which the models were trained. The platform features scoring functionality to guide user decision-making. Conclusion: High-quality datasets along with chemical space considerations yielded ADMET models performing favorably with utility in the drug discovery process.


Subject(s)
Artificial Intelligence , Drug Discovery , Databases, Factual
2.
Bioorg Med Chem Lett ; 30(5): 126929, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31952960

ABSTRACT

A series of potential new 5-HT2 receptor scaffolds based on a simplification of the clinically studied, 5-HT2CR agonist vabicaserin, were designed. An in vivo feeding assay early in our screening process played an instrumental part in the lead identification process, leading us to focus on a 6,5,7-tricyclic scaffold. A subsequent early SAR investigation provided potent agonists of the 5-HT2C receptor that were highly selective in both functional and binding assays, had good rat PK properties and that significantly reduced acute food intake in the rat.


Subject(s)
Benzodiazepines/pharmacology , Heterocyclic Compounds, 3-Ring/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Animals , Benzodiazepines/chemical synthesis , Benzodiazepines/metabolism , Benzodiazepines/pharmacokinetics , Dogs , Drug Discovery , Drug Stability , Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 3-Ring/metabolism , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Humans , Macaca fascicularis , Male , Mice , Microsomes/metabolism , Molecular Structure , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Serotonin 5-HT2 Receptor Agonists/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Structure-Activity Relationship
3.
J Med Chem ; 60(3): 913-927, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28072531

ABSTRACT

The design and synthesis of a new series of potent non-prostanoid IP receptor agonists that showed oral efficacy in the rat monocrotaline model of pulmonary arterial hypertension (PAH) are described. Detailed profiling of a number of analogues resulted in the identification of 5c (ralinepag) that has good selectivity in both binding and functional assays with respect to most members of the prostanoid receptor family and a more modest 30- to 50-fold selectivity over the EP3 receptor. In our hands, its potency and efficacy are comparable or superior to MRE269 (the active metabolite of the clinical compound NS-304) with respect to in vitro IP receptor dependent cAMP accumulation assays. 5c had an excellent PK profile across species. Enterohepatic recirculation most probably contributes to a concentration-time profile after oral administration in the cynomolgus monkey that showed a very low peak-to-trough ratio. Following the identification of an acceptable solid form, 5c was selected for further development for the treatment of PAH.


Subject(s)
Acetates/therapeutic use , Carbamates/therapeutic use , Hypertension, Pulmonary/drug therapy , Receptors, Prostaglandin/agonists , Acetates/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Carbamates/pharmacokinetics , Drug Discovery , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 26(24): 5877-5882, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27864071

ABSTRACT

The syntheses, structure-activity relationships (SARs), and biological activities of tetrahydroquinoline-based tricyclic amines as 5-HT2C receptor agonists are reported. An early lead containing a highly unique 6,6,7-ring system was optimized for both in vitro potency and selectivity at the related 5-HT2B receptor. Orally bioactive, potent, and selective 6,6,6-tricyclic 5-HT2C agonists were identified.


Subject(s)
Amines/pharmacology , Quinolines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Administration, Oral , Amines/administration & dosage , Amines/chemistry , Animals , Dose-Response Relationship, Drug , Male , Molecular Structure , Quinolines/administration & dosage , Quinolines/chemistry , Rats , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/administration & dosage , Serotonin 5-HT2 Receptor Agonists/chemistry , Structure-Activity Relationship
5.
Psychopharmacology (Berl) ; 232(11): 1973-82, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25524140

ABSTRACT

RATIONALE: Synergistic or supra-additive interactions between the anorectics (dex)fenfluramine and phentermine have been reported previously in the rat and in the clinic. Studies with 5-HT2C antagonists and 5-HT2C knockouts have demonstrated dexfenfluramine hypophagia in the rodent to be mediated by actions at the 5-HT2C receptor. Given the recent FDA approval of the selective 5-HT2C agonist lorcaserin (BELVIQ®) for weight management, we investigated the interaction between phentermine and 5-HT2C agonists on food intake. OBJECTIVES: This study aims to confirm dexfenfluramine-phentermine (dex-phen) synergy in a rat food intake assay, to extend these findings to other 5-HT2C agonists, and to determine whether pharmacokinetic interactions could explain synergistic findings with particular drug combinations. METHODS: Isobolographic analyses were performed in which phentermine was paired with either dexfenfluramine, the 5-HT2C agonist AR630, or the 5-HT2C agonist lorcaserin, and inhibition of food intake measured in the rat. Subsequent studies assessed these same phentermine-drug pair combinations spanning both the full effect range and a range of fixed ratio drug combinations. Satellite groups received single doses of each drug either alone or in combination with phentermine, and free brain concentrations were measured. RESULTS: Dex-phen synergy was confirmed in the rat and extended to the 5-HT2C agonist AR630. In contrast, although some synergistic interactions between lorcaserin and phentermine were observed, these combinations were largely additive. Synergistic interactions between phentermine and dexfenfluramine or AR630 were accompanied by combination-induced increases in brain levels of phentermine. CONCLUSIONS: Dex-phen synergy in the rat is caused by a pharmacokinetic interaction, resulting in increased central concentrations of phentermine.


Subject(s)
Appetite Depressants/pharmacology , Dexfenfluramine/pharmacology , Eating/drug effects , Fenfluramine/pharmacology , Phentermine/pharmacology , Receptor, Serotonin, 5-HT2C/drug effects , Animals , Appetite Depressants/pharmacokinetics , Dexfenfluramine/pharmacokinetics , Drug Synergism , Fenfluramine/pharmacokinetics , Male , Phentermine/pharmacokinetics , Rats , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Serotonin 5-HT2 Receptor Agonists/pharmacology
6.
ACS Med Chem Lett ; 5(12): 1313-7, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516790

ABSTRACT

APD334 was discovered as part of our internal effort to identify potent, centrally available, functional antagonists of the S1P1 receptor for use as next generation therapeutics for treating multiple sclerosis (MS) and other autoimmune diseases. APD334 is a potent functional antagonist of S1P1 and has a favorable PK/PD profile, producing robust lymphocyte lowering at relatively low plasma concentrations in several preclinical species. This new agent was efficacious in a mouse experimental autoimmune encephalomyelitis (EAE) model of MS and a rat collagen induced arthritis (CIA) model and was found to have appreciable central exposure.

7.
J Med Chem ; 55(8): 3644-66, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22435740

ABSTRACT

G-protein coupled receptor (GPCR) GPR109a is a molecular target for nicotinic acid and is expressed in adipocytes, spleen, and immune cells. Nicotinic acid has long been used for the treatment of dyslipidemia due to its capacity to positively affect serum lipids to a greater extent than other currently marketed drugs. We report a series of tricyclic pyrazole carboxylic acids that are potent and selective agonists of GPR109a. Compound R,R-19a (MK-1903) was advanced through preclinical studies, was well tolerated, and presented no apparent safety concerns. Compound R,R-19a was advanced into a phase 1 clinical trial and produced a robust decrease in plasma free fatty acids. On the basis of these results, R,R-19a was evaluated in a phase 2 study in humans. Because R,R-19a produced only a weak effect on serum lipids as compared with niacin, we conclude that the beneficial effects of niacin are most likely the result of an undefined GPR109a independent pathway.


Subject(s)
Fatty Acids, Nonesterified/blood , Pyrazoles/therapeutic use , Receptors, G-Protein-Coupled/agonists , Animals , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/therapeutic use , Male , Niacin/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Receptors, G-Protein-Coupled/drug effects , Receptors, Nicotinic/drug effects , Stereoisomerism , Vasodilator Agents/pharmacology
8.
Bioorg Med Chem Lett ; 22(4): 1750-5, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22264481

ABSTRACT

The design and synthesis of a second generation GPR119-agonist clinical candidate for the treatment of diabetes is described. Compound 16 (APD597, JNJ-38431055) was selected for preclinical development based on a good balance between agonist potency, intrinsic activity and in particular on its good solubility and reduced drug-drug interaction potential. In addition, extensive in vivo studies showed a more favorable metabolic profile that may avoid the generation of long lasting metabolites with the potential to accumulate in clinical studies.


Subject(s)
Drug Discovery , Hypoglycemic Agents/chemistry , Piperidines/chemistry , Piperidines/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Animals , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Humans , Hypoglycemic Agents/pharmacokinetics , Mice , Mice, Inbred C57BL , Molecular Structure , Rats , Rats, Sprague-Dawley
9.
Bioorg Med Chem Lett ; 21(19): 6013-8, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21852130
10.
J Chem Inf Model ; 51(8): 1754-61, 2011 Aug 22.
Article in English | MEDLINE | ID: mdl-21761904

ABSTRACT

Exploiting the ever growing set of activity data for compounds against biological targets represents both a challenge and an opportunity for ligand-based virtual screening (LBVS). Because G-protein coupled receptors (GPCRs) represent a rich set of potential drug targets, we sought to develop an appropriate method to examine large sets of GPCR ligand information for both screening collection enhancement and hit expansion. To this end, we have implemented a modified version of BDACCS that removes highly correlated descriptors (rBDACCS). To test the hypothesis that a smaller, focused descriptor set would improve performance, we have extended rBDACCS by using a genetic algorithm (GA) to choose target-specific descriptors appropriate for selecting the set of 100 compounds most likely to be active from a decoy database. We have called this method GA-focused descriptor active space (GAFDAS). We compared the performce of rBDACCS and GAFDAS using a collection of activity data for 252 GPCR/ligand sets versus two decoy databases. While both methods appear effective in LBVS, overall GAFDAS performs better than rBDACCS in the early selection of compounds against both decoy databases.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Discovery/methods , Receptors, G-Protein-Coupled , Software , User-Computer Interface , Algorithms , Animals , Binding Sites , Databases, Factual , Drug Delivery Systems , Drug Discovery/statistics & numerical data , High-Throughput Screening Assays , Humans , Ligands , Mice , Protein Binding , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
11.
Bioorg Med Chem Lett ; 21(10): 3134-41, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21444206

ABSTRACT

We herein outline the design of a new series of agonists of the pancreatic and GI-expressed orphan G-protein coupled receptor GPR119, a target that has been of significant recent interest in the field of metabolism, starting from our prototypical agonist AR231453. A number of key parameters were improved first by incorporation of a pyrazolopyrimidine core to create a new structural series and secondly by the introduction of a piperidine ether group capped with a carbamate. Chronic treatment with one compound from the series, 3k, showed for the first time that blood glucose and glycated hemoglobin (HbA1c) levels could be significantly reduced in Zucker Diabetic Fatty (ZDF) rats over several weeks of dosing. As a result of these and other data described here, 3k (APD668, JNJ-28630368) was the first compound with this mechanism of action to be progressed into clinical development for the treatment of diabetes.


Subject(s)
Blood Glucose/drug effects , Drug Discovery , Hypoglycemic Agents/pharmacology , Receptors, G-Protein-Coupled/agonists , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Disease Models, Animal , Glucose/metabolism , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Molecular Structure , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Zucker
13.
Bioorg Med Chem Lett ; 19(15): 4207-9, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19524438

ABSTRACT

A series of 5-N,N-disubstituted-5-aminopyrazole-3-carboxylic acids were prepared and found to act as highly potent and selective agonists of the G-Protein Coupled Receptor (GPCR) GPR109b, a low affinity receptor for niacin and some aromatic d-amino acids. Little activity was observed at the highly homologous higher affinity niacin receptor, GPR109a.


Subject(s)
Carboxylic Acids/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Animals , Atherosclerosis/drug therapy , CHO Cells , Carboxylic Acids/pharmacology , Chemistry, Pharmaceutical/methods , Cricetinae , Cricetulus , Drug Design , Dyslipidemias/drug therapy , Humans , Ligands , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/chemistry , Models, Chemical , Niacin/chemistry , Pyrazoles/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic
14.
J Chem Inf Model ; 49(7): 1847-55, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19537722

ABSTRACT

Inferring the relative bioactive poses between active molecules is a common problem in drug discovery. The use of rapid pairwise alignment algorithms in conjunction with rigid conformer libraries has become a prevalent approach to this problem. These programs can be easily used to compare two molecules or suggest alternatives to a single known active. However, it is not obvious how to combine pairwise alignments between multiple actives into an overlay that reproduces the binding mode of those actives in the target receptor. We describe a new algorithm, DIFGAPE (DIstance geometry Focused Genetic Algorithm Pose Evaluator) that, given pairwise alignments of conformers of active compounds, attempts to reproduce overlays of ligand binding modes. The software was evaluated on 13 test systems from 9 protein targets using associated ligands extracted from the PDB. Starting from 2D ligand structures with no protein information, we were able in 4 systems to approximate the crystallographically observed binding mode. For example, the prediction for a set of 11 ligands targeting FXa had 1.6 A rmsd to crystal structure coordinates. Finally, the evaluation illustrated current challenges for molecular conformer generators and pairwise alignment algorithms.


Subject(s)
Algorithms , Drug Discovery , Proteins/metabolism , Animals , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Molecular Conformation , Protein Binding , Protein Conformation , Proteins/chemistry
15.
J Med Chem ; 51(16): 5101-8, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18665582

ABSTRACT

The discovery and profiling of 3-(1H-tetrazol-5-yl)-1,4,5,6-tetrahydro-cyclopentapyrazole (5a, MK-0354), a partial agonist of GPR109a, is described. Compound 5a retained the plasma free fatty acid lowering effects in mice associated with GPR109a agonism, but did not induce vasodilation at the maximum feasible dose. Moreover, preadministration of 5a blocked the flushing effect induced by nicotinic acid but not that induced by PGD2. This profile made 5a a suitable candidate for further study for the treatment of dyslipidemia.


Subject(s)
Hypolipidemic Agents/pharmacology , Pyrazoles/pharmacokinetics , Receptors, G-Protein-Coupled/agonists , Tetrazoles/pharmacokinetics , Adipocytes/drug effects , Animals , Fatty Acids, Nonesterified/blood , Humans , Hypolipidemic Agents/chemical synthesis , Hypolipidemic Agents/therapeutic use , Lipolysis/drug effects , Male , Mice , Mice, Inbred C57BL , Pyrazoles/chemical synthesis , Receptors, Nicotinic , Tetrazoles/chemical synthesis , Vasodilation/drug effects
16.
Bioorg Med Chem Lett ; 18(4): 1490-4, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18194865

ABSTRACT

A new family of Histamine H(3) receptor antagonists (5a-t) has been prepared based on the structure of the natural product Conessine, a known H(3) antagonist. Several members of the new series are highly potent and selective binders of rat and human H(3) receptors and display inverse agonism at the human H(3) receptor. Compound 5n exhibited promising rat pharmacokinetic properties and demonstrated functional antagonism of the H(3) receptor in an in-vivo pharmacological model.


Subject(s)
Alkaloids/chemical synthesis , Alkaloids/pharmacology , Amines/chemical synthesis , Amines/pharmacology , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/pharmacology , Alkaloids/chemistry , Amines/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Design , Histamine Agonists/pharmacology , Histamine H3 Antagonists/metabolism , Humans , Kinetics , Pyrrolidines/chemical synthesis , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Rats , Receptors, Histamine H3/metabolism , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 17(23): 6619-22, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17931863

ABSTRACT

A series of 3-nitro-4-substituted-aminobenzoic acids were prepared and found to act as potent and highly selective agonists of the orphan human GPCR GPR109b, a low affinity receptor for niacin. No activity was observed at the closely homologous high affinity niacin receptor, GPR109a. A second series, comprising 6-amino-substituted nicotinic acids was, also prepared and several analogues showed comparable activity to the nitroaryl series.


Subject(s)
Benzoates/chemistry , Nicotinic Acids/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Benzoates/agonists , Benzoates/metabolism , CHO Cells , Cricetinae , Cricetulus , Humans , Niacin/metabolism , Nicotinic Acids/agonists , Nicotinic Acids/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/physiology , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 17(17): 4914-9, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17588745

ABSTRACT

A strategy for lead identification of new agonists of GPR109a, starting from known compounds shown to activate the receptor, is described. Early compound triage led to the formulation of a binding hypothesis and eventually to our focus on a series of pyrazole acid derivatives. Further elaboration of these compounds provided a series of 5,5-fused pyrazoles to be used as lead compounds for further optimization.


Subject(s)
Acids, Heterocyclic/chemistry , Chemistry, Pharmaceutical/methods , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, Nicotinic/chemistry , Adipocytes/metabolism , Animals , Cyclic AMP/metabolism , Drug Design , Humans , Kinetics , Models, Chemical , Niacin/chemistry , Pyrazoles/chemistry , Rats , Spleen/metabolism
19.
J Med Chem ; 50(7): 1445-8, 2007 Apr 05.
Article in English | MEDLINE | ID: mdl-17358052

ABSTRACT

Recently identified GPCRs, GPR109a and GPR109b, the high and low affinity receptors for niacin, may represent good targets for the development of HDL elevating drugs for the treatment of atherosclerosis. Acifran, an agonist of both receptors, has been tested in human subjects, yet until recently very few analogs had been reported. We describe a series of acifran analogs prepared using newly developed synthetic pathways and evaluated as agonists for GPR109a and GPR109b, resulting in identification of compounds with improved activity at these receptors.


Subject(s)
Furans/chemical synthesis , Niacin/metabolism , Receptors, G-Protein-Coupled/agonists , Cell Line , Cyclic AMP/biosynthesis , Furans/chemistry , Furans/pharmacology , Humans , Niacin/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, Nicotinic/metabolism , Stereoisomerism , Structure-Activity Relationship
20.
J Med Chem ; 49(4): 1227-30, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480258

ABSTRACT

1-Substituted benzotriazole carboxylic acids have been identified as the first reported examples of selective small-molecule agonists of the human orphan G-protein-coupled receptor GPR109b (HM74), a low-affinity receptor for the HDL-raising drug niacin. No activity was observed at the highly homologous high-affinity niacin receptor GPR109a (HM74A). The high degree of selectivity was attributed to a difference in the amino acid sequence adjacent to a key arginine-ligand interaction allowing somewhat larger ligands to be tolerated by GPR109b.


Subject(s)
Carboxylic Acids/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Triazoles/chemical synthesis , Adipocytes/drug effects , Adipocytes/metabolism , Binding Sites , Carboxylic Acids/chemistry , Carboxylic Acids/pharmacology , Cyclic AMP/biosynthesis , Humans , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Ligands , Lipolysis/drug effects , Niacin/pharmacology , Receptors, Nicotinic , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...