Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Air Waste Manag Assoc ; 62(11): 1346-57, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23210226

ABSTRACT

Mobile-source air toxic (MSAT) levels increase in confining microenvironments (MEs) with numerous emission sources of vehicle exhaust or evaporative emissions or during high-load and cold-start conditions. Reformulated fuels are expected to reduce MSAT and ozone precursor emissions. This study, required under the Clean Air Act Section 211b, evaluated high-end exposures in cities using reformulated (methyl tertiary-butyl ether [MTBE] or ethanol [EtOH]) fuels and conventional gasoline blends. The study investigates 13 high-end MEs, sampling under enhanced exposure conditions expected to result in maximal fuel and exhaust component exposures to carbon monoxide (CO), carbon dioxide (CO2), BTEX (benzene, toluene, ethylbenzene, xylenes), MTBE, 1,3-butadiene (1,3-BD), EtOH,formaldehyde (HCHO), and acetaldehyde (CH3CHO). The authors found that day-to-day ME variations in high-end benzene, 1,3-BD, HCHO, and CO concentrations are substantial, but independent of gasoline composition and season, and related to the activity and emission rates of ME sources, which differ from day to day.


Subject(s)
Air Pollutants/chemistry , Gasoline/analysis , Seasons , Vehicle Emissions/analysis , Cities , Environmental Exposure , Environmental Monitoring , Humans , United States
2.
Environ Sci Technol ; 39(14): 5398-406, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16082972

ABSTRACT

A series of measurements have been performed at Hill Air Force Base to evaluate real-time instruments for measurements of black carbon aerosol and particle-bound PAHs emitted from spark and ignition compression vehicles. Vehicles were operated at idle or fast idle in one set of measurements and were placed under load on a dynamometer during the second series. Photoacoustic instruments were developed that operated at a wavelength of 1047 nm where gaseous interference is negligible, although sensitivity to black carbon is good. Compact, efficient, solid-state lasers with direct electronic modulation capabilities are used in these instruments. Black carbon measurements are compared with samples collected on quartz fiber filters that were evaluated using the thermal optical reflectance method. A measure of total particle-bound PAH was provided by photoelectric aerosol sensors (PAS) and is evaluated against a sum of PAH mass concentrations obtained with a filter-denuder combination. The PAS had to be operated with a dilution system held at approximately 150 degrees C for most of the source sampling to prevent spurious behavior, thus perhaps compromising detection of lighter PAHs. PA and PAS measurements were found to have a high degree of correlation, perhaps suggesting that the PAS can respond to the polycyclic nature of the black carbon aerosol. The PAS to PA ratio for ambient air in Fresno, CA is 3.7 times as large in winter than in summer months, suggesting that the PAS clearly does respond to compounds other than BC when the instrument is used without the heated inlet.


Subject(s)
Air Pollutants/analysis , Carbon/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Acoustics , Aerosols/analysis , California , Carcinogens , Gasoline , Photochemistry , Seasons , Sensitivity and Specificity
3.
Environ Sci Technol ; 38(9): 2557-67, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15180051

ABSTRACT

Emission measurements were obtained for a variety of military vehicles at Hill Air Force Base (Ogden, UT) in November 2000 as part of a Strategic Environmental Research and Development Program. Aircraft ground support equipment vehicles using gasoline, diesel, and JP8 fuels were tested using chassis dynamometers under predetermined load. The exhaust from the tested vehicle was passed to a dilution tunnel where it was diluted 30-40 times and collected using Micro-Orifice Uniform Deposit Impactor (MOUDI) fitted with aluminum substrates, an XAD-coated annular denuder, and a filter followed by a solid adsorbent. All MOUDI substrates were analyzed for mass and for organic and elemental (EC) carbon by the thermal/optical reflectance method and for polycyclic aromatic hydrocarbons (PAHs) by GC/MS. Black carbon was measured with a photoacoustic instrument. The denuder and filter/solid adsorbent samples were analyzed for semivolatile PAH. Overall, there is more mass and higher EC contribution when the vehicle is run under higher load in comparison with the low load. However, older vehicles generally show more mass and EC emissions than newer vehicles, and there is a shift toward smaller particle sizes for the low load, which is most pronounced for newer vehicles. The particle-associated semivolatile PAHs and nonvolatile four-through six-ring PAHs are present predominantly on the submicron particles collected on MOUDI stages 0.1-0.18, 0.18-0.32, and 0.32-0.56 microm. For the low-load runs, the distribution of PAHs seems to be shifted toward smaller size particles. The gas-particle phase distribution of semivolatile PAHs depends also on the engine loading. For idle, not only are the more volatile two- and three-ring PAHs, from naphthalene to dimethylphenanthrenes, retained on the denuder portion, but also less volatile four-ring PAHs, such as fluoranthene and pyrene, are retained by the denuder at the 80-90% range, which implies that they are present predominantly in the gas phase. In contrast, for engines under high loads, a much larger portion of three- and four-ring PAHs are partitioned to the particle phase.


Subject(s)
Air Pollutants/analysis , Gasoline/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Equipment Design , Motor Vehicles , Particle Size , Volatilization
4.
Sci Total Environ ; 276(1-3): 19-31, 2001 Aug 10.
Article in English | MEDLINE | ID: mdl-11516136

ABSTRACT

Measurements of volatile organic compounds (VOC) were carried out in the California/Mexico border region during the Southern California Ozone Study in the summer of 1997 (SCOS97). Integrated 3-h samples were collected in Rosarito (south of Tijuana, Mexico) and in Mexicali during intensive operational periods (IOP), twice per IOP day. VOC were collected using stainless-steel 6-1 canisters; carbonyl compounds were collected using 2,4-dinitrophenyl-hydrazine (DNPH) impregnated C18 SepPak cartridges. The canister samples were analyzed for speciated volatile hydrocarbons (C2-C12), CO, CO2, CH4, methyl t-butyl ether (MTBE), and halogenated hydrocarbons. DNPH-impregnated cartridges were analyzed for 14 C1-C7 carbonyl compounds. The concentrations of all species were higher at Mexicali than in Rosarito. A good correlation between total non-methane hydrocarbons (TNMHC), CO, and other pollutants associated with motor vehicle emissions observed for Mexicali indicates that the main source of TNMHC at this site is vehicular traffic.


Subject(s)
Air Pollution/analysis , Environmental Monitoring , Vehicle Emissions/analysis , California , Humans , Hydrocarbons/analysis , Mexico , Organic Chemicals/analysis , Volatilization
5.
Environ Sci Technol ; 35(6): 1054-63, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11347914

ABSTRACT

Total and speciated particulate matter (PM2.5 and PM10) emission factors from in-use vehicles were measured for a mixed light- (97.4% LD) and heavy-duty fleet (2.6% HD) in the Sepulveda Tunnel, Los Angeles, CA. Seventeen 1-h test runs were performed between July 23, 1996, and July 27, 1996. Emission factors were calculated from mass concentration measurements taken at the tunnel entrance and exit, the volume of airflow through the tunnel, and the number of vehicles passing through the 582 m long tunnel. For the mixed LD and HD fleet, PM2.5 emission factors in the Sepulveda Tunnel ranged from 0.016 (+/-0.007) to 0.115 (+/-0.019) g/vehicle-km traveled with an average of 0.052 (+/-0.027) g/vehicle.km. PM10 emission factors ranged from 0.030 (+/-0.009) to 0.131 (+/-0.024) g/vehicle. km with an average of 0.069 (+/-0.030) g/vehicle.km. The PM2.5 emission factor was approximately 74% of the PM10 factor. Speciated emission rates and chemical profiles for use in receptor modeling were also developed. PM2.5 was dominated by organic carbon (OC) (31.0 +/- 19.5%) and elemental carbon (EC) (48.5 +/- 20.5%) that together account for 79% (+/-24%) of the total emissions. Crustal elements (Fe, Mg, Al, Si, Ca, and Mn) contribute approximately 7.8%, and the ions Cl-, NO3-, NH3+, SO4(2-), and K+ together constitute another 9.8%. In the PM10 size fraction the particulate emissions were also dominated by OC (31 +/- 12%) and EC (35 +/- 13%). The third most prominent species was Fe (18.5 +/- 9.0%), which is greater than would be expected from purely geological sources. Other geological components (Mg, Al, Si, K, Ca, and Mn) accounted for an additional 12.6%. PM10 emission factors showed some dependence on vehicle speed, whereas PM2.5 did not. For test runs in which the average vehicle speed was 42.6 km/h a 1.7 times increase in PM10 emission factor was observed compared to those runs with an average vehicle speed of 72.6 km/h. Speciated emissions were similar. However, there is significantly greater mass attributable to geological material in the PM10, indicative of an increased contribution from resuspended road dust. The PM2.5 shows relatively good correlation with NOx emissions, which indicates that even at the low percent of HD vehicles, which emit significantly more NOx than LD vehicles, they may also have a significant impact on the PM2.5 levels.


Subject(s)
Air Pollution, Indoor/analysis , Vehicle Emissions/analysis , Air Movements , Environmental Monitoring , Humans , Nitric Oxide/analysis , Particle Size
6.
J Air Waste Manag Assoc ; 48(11): 1038-50, 1998 Nov.
Article in English | MEDLINE | ID: mdl-9846128

ABSTRACT

In order to evaluate the existing risk to public health in Arizona related to hazardous air pollution, ambient air monitoring for selected hazardous air pollutants (HAPs) was carried out in 1994-1996 in several representative urban and rural areas of Arizona. A wide range of organic HAPs was monitored, requiring a variety of sampling and analysis methods. Stainless steel SUMMA canisters were used for collection of volatile hydrocarbons and halocarbons, which were analyzed by capillary gas chromatography with flame ionization and electron capture detection (GC-FID/ECD). Carbonyl compounds were collected using 2,4-dinitrophenylhydrazine-impregnated cartridges and analyzed by high performance liquid chromatography with ultraviolet detection. Semi-volatile and non-volatile polycyclic aromatic compounds were collected using a sampling train consisting of a filter followed by a PUF/XAD-4/PUF sandwich cartridge. Following extraction, samples were analyzed by capillary GC with mass spectrometric detection (GC-MS). Database software was developed for data processing and reporting functions. This paper describes the sampling strategy and the sampling and analysis methods employed in the monitoring program and presents a summary of all the results obtained during the duration of the sampling program.

7.
Arch Environ Contam Toxicol ; 19(4): 583-92, 1990.
Article in English | MEDLINE | ID: mdl-2386412

ABSTRACT

A multiresidue analytical method is described for pesticides, transformation products, and related toxicants based upon high performance liquid chromatographic (HPLC) fractionation of extracted residue on a Partisil silica gel normal phase column followed by selective-detector gas chromatographic (GC) determination of components in each fraction. The HPLC mobile phase gradient (hexane to methyl t-butyl ether) gave good chromatographic efficiency, resolution, reproducibility and recovery for 61 test compounds, and allowed for collection in four fractions spanning polarities from low polarity organochlorine compounds (fraction 1) to polar N-methylcarbamates and organophosphorus oxons (fraction 4). The multiresidue method was developed for use with air samples collected on XAD-4 and related trapping agents, and water samples extracted with methylene chloride. Detection limits estimated from spiking experiments were generally 0.3-1 ng/m3 for high-volume air samples, and 0.01-0.1 microgram/L for one-liter water samples. Applications were made to determination of pesticides in fogwater and air samples.


Subject(s)
Air/analysis , Pesticide Residues/analysis , Water/analysis , Chemical Phenomena , Chemistry , Chromatography, Gas , Chromatography, High Pressure Liquid
8.
Monatsschr Kinderheilkd ; 134(12): 874-7, 1986 Dec.
Article in German | MEDLINE | ID: mdl-3821744

ABSTRACT

Intra vitam diagnostic procedures revealed a complete laryngo-tracheo-oesophageal cleft in a premature infant with respiratory distress. Anamnesis together with clinical and roentgenological symptoms suggested the diagnosis of oesophageal atresia or oesophago-tracheal fistula. The diagnosis of "oesophago-trachea" was finally confirmed by laryngo-tracheoscopy. The morphologic defect in this case was combined with partial supradiaphragmatic dislocation of the stomach and with intestinal malrotation.


Subject(s)
Emergencies , Esophagus/abnormalities , Larynx/abnormalities , Respiratory Distress Syndrome, Newborn/pathology , Trachea/abnormalities , Diagnosis, Differential , Endoscopy , Esophagus/pathology , Female , Humans , Infant, Newborn , Larynx/pathology , Trachea/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...