Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
J Am Heart Assoc ; 12(19): e028227, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37753718

ABSTRACT

Background Self-administration of investigational intranasal L-type calcium channel blocker etripamil during paroxysmal supraventricular tachycardia (PSVT) appeared safe and well-tolerated in the phase 3 NODE-301 (Multi-Centre, Randomized, Double-Blind, Placebo-Controlled, Efficacy, and Safety Study of Etripamil Nasal Spray for the Termination of Spontaneous Episodes of Paroxysmal Supraventricular Tachycardia) trial of adults with sustained atrioventricular nodal-dependent PSVT. The NODE-302 open-label extension further characterized etripamil safety and efficacy. Methods and Results Eligible patients were monitored via self-applied cardiac monitoring system for 5 hours after etripamil self-administration. The primary end point was time-to-conversion of positively adjudicated PSVT to sinus rhythm after etripamil treatment. Probability of conversion to sinus rhythm was reported via Kaplan-Meier plot. Adverse events were based on self-reported symptoms and clinical evaluations. Among 169 patients enrolled, 105 self-administered etripamil ≥1 time for perceived PSVT (median [range], 232 [8-584] days' follow-up). Probability of conversion within 30 minutes of etripamil was 60.2% (median time to conversion, 15.5 minutes) among 188 PSVT episodes (92 patients) positively adjudicated as atrioventricular nodal dependent by independent ECG analysis. Among 40 patients who self-treated 2 episodes, 75% had a significantly consistent response by 30 minutes; 9 did not convert on either episode, and 21 converted on both episodes (χ2=8.09; P=0.0045). Forty-five of 105 patients (42.9%) had ≥1 treatment-emergent adverse event, generally transient and mild-to-moderate, including nasal congestion (14.3%), nasal discomfort (14.3%), or rhinorrhea (12.4%). No serious cardiac safety events were observed within 24 hours of etripamil. Conclusions In this extension study, investigational etripamil nasal spray was well tolerated for self-treating recurrent episodes of PSVT without medical supervision. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03635996.


Subject(s)
Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Adult , Humans , Atrioventricular Node , Nasal Sprays , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/drug therapy , Clinical Trials, Phase III as Topic
2.
Lancet ; 402(10396): 118-128, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37331368

ABSTRACT

BACKGROUND: Etripamil is a fast-acting, intranasally administered calcium-channel blocker in development for on-demand therapy outside a health-care setting for paroxysmal supraventricular tachycardia. We aimed to evaluate the efficacy and safety of etripamil 70 mg nasal spray using a symptom-prompted, repeat-dose regimen for acute conversion of atrioventricular-nodal-dependent paroxysmal supraventricular tachycardia to sinus rhythm within 30 min. METHODS: RAPID was a multicentre, randomised, placebo-controlled, event-driven trial, conducted at 160 sites in North America and Europe as part 2 of the NODE-301 study. Eligible patients were aged at least 18 years and had a history of paroxysmal supraventricular tachycardia with sustained, symptomatic episodes (≥20 min) as documented by electrocardiogram. Patients were administered two test doses of intranasal etripamil (each 70 mg, 10 min apart) during sinus rhythm; those who tolerated the test doses were randomly assigned (1:1) using an interactive response technology system to receive either etripamil or placebo. Prompted by symptoms of paroxysmal supraventricular tachycardia, patients self-administered a first dose of intranasal 70 mg etripamil or placebo and, if symptoms persisted beyond 10 min, a repeat dose. Continuously recorded electrocardiographic data were adjudicated, by individuals masked to patient assignment, for the primary endpoint of time to conversion of paroxysmal supraventricular tachycardia to sinus rhythm for at least 30 s within 30 min after the first dose, which was measured in all patients who administered blinded study drug for a confirmed atrioventricular-nodal-dependent event. Safety outcomes were assessed in all patients who self-administered blinded study drug for an episode of perceived paroxysmal supraventricular tachycardia. This trial is registered at ClinicalTrials.gov, NCT03464019, and is complete. FINDINGS: Between Oct 13, 2020, and July 20, 2022, among 692 patients randomly assigned, 184 (99 from the etripamil group and 85 from the placebo group) self-administered study drug for atrioventricular-nodal-dependent paroxysmal supraventricular tachycardia, with diagnosis and timing confirmed. Kaplan-Meier estimates of conversion rates by 30 min were 64% (63/99) with etripamil and 31% (26/85) with placebo (hazard ratio 2·62; 95% CI 1·66-4·15; p<0·0001). Median time to conversion was 17·2 min (95% CI 13·4-26·5) with the etripamil regimen versus 53·5 min (38·7-87·3) with placebo. Prespecified sensitivity analyses of the primary assessment were conducted to test robustness, yielding supporting results. Treatment-emergent adverse events occurred in 68 (50%) of 99 patients treated with etripamil and 12 (11%) of 85 patients in the placebo group, most of which were located at the administration site and were mild or moderate, and all of which were transient and resolved without intervention. Adverse events occurring in at least 5% of patients treated with etripamil were nasal discomfort (23%), nasal congestion (13%), and rhinorrhea (9%). No serious etripamil-related adverse events or deaths were reported. INTERPRETATION: Using a symptom-prompted, self-administered, initial and optional-repeat-dosing regimen, intranasal etripamil was well tolerated, safe, and superior to placebo for the rapid conversion of atrioventricular-nodal-dependent paroxysmal supraventricular tachycardia to sinus rhythm. This approach could empower patients to treat paroxysmal supraventricular tachycardia themselves outside of a health-care setting, and has the potential to reduce the need for additional medical interventions, such as intravenous medications given in an acute-care setting. FUNDING: Milestone Pharmaceuticals.


Subject(s)
Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Humans , Adolescent , Adult , Tachycardia, Supraventricular/drug therapy , Tachycardia, Paroxysmal/drug therapy , Benzoates/therapeutic use , Double-Blind Method
3.
Heart Rhythm O2 ; 4(4): 268-274, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124559

ABSTRACT

Background: Long QT syndrome (LQTS) stems from pathogenic variants in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3) and is characterized by action potential duration (APD) prolongation. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) is proposed as a novel therapeutic for LQTS. Objective: The study sought to test the efficacy of novel, selective SGK1 inhibitors in induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) models of LQTS. Methods: The mexiletine (MEX)-sensitive SCN5A-P1332L iPSC-CMs were tested initially compared with a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 SCN5A-P1332L variant-corrected isogenic control (IC). The SGK1-I1 therapeutic efficacy, compared with MEX, was tested for APD at 90% repolarization (APD90) shortening in SCN5A-P1332L, SCN5A-R1623Q, KCNH2-G604S, and KCNQ1-V254M iPSC-CMs using FluoVolt. Results: The APD90 was prolonged in SCN5A-P1332L iPSC-CMs compared with its IC (646 ± 7 ms vs 482 ± 23 ms; P < .0001). MEX shortened the APD90 to 560 ± 7 ms (52% attenuation, P < .0001). SGK1-I1 shortened the APD90 to 518 ± 5 ms (78% attenuation, P < .0001) but did not shorten the APD90 in the IC. SGK1-I1 shortened the APD90 of the SCN5A-R1623Q iPSC-CMs (753 ± 8 ms to 475 ± 19 ms compared with 558 ± 19 ms with MEX), the KCNH2-G604S iPSC-CMs (666 ± 10 ms to 574 ± 18 ms vs 538 ± 15 ms after MEX), and the KCNQ1-V254M iPSC-CMs (544 ± 10 ms to 475 ± 11ms; P = .0004). Conclusions: Therapeutically inhibiting SGK1 effectively shortens the APD in human iPSC-CM models of the 3 major LQTS genotypes. These preclinical data support development of SGK1 inhibitors as novel, first-in-class therapy for patients with congenital LQTS.

4.
Europace ; 25(5)2023 05 19.
Article in English | MEDLINE | ID: mdl-37099628

ABSTRACT

AIMS: Current long QT syndrome (LQTS) therapy, largely based on beta-blockade, does not prevent arrhythmias in all patients; therefore, novel therapies are warranted. Pharmacological inhibition of the serum/glucocorticoid-regulated kinase 1 (SGK1-Inh) has been shown to shorten action potential duration (APD) in LQTS type 3. We aimed to investigate whether SGK1-Inh could similarly shorten APD in LQTS types 1 and 2. METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and hiPSC-cardiac cell sheets (CCS) were obtained from LQT1 and LQT2 patients; CMs were isolated from transgenic LQT1, LQT2, and wild-type (WT) rabbits. Serum/glucocorticoid-regulated kinase 1 inhibition effects (300 nM-10 µM) on field potential durations (FPD) were investigated in hiPSC-CMs with multielectrode arrays; optical mapping was performed in LQT2 CCS. Whole-cell and perforated patch clamp recordings were performed in isolated LQT1, LQT2, and WT rabbit CMs to investigate SGK1-Inh (3 µM) effects on APD. In all LQT2 models across different species (hiPSC-CMs, hiPSC-CCS, and rabbit CMs) and independent of the disease-causing variant (KCNH2-p.A561V/p.A614V/p.G628S/IVS9-28A/G), SGK1-Inh dose-dependently shortened FPD/APD at 0.3-10 µM (by 20-32%/25-30%/44-45%). Importantly, in LQT2 rabbit CMs, 3 µM SGK1-Inh normalized APD to its WT value. A significant FPD shortening was observed in KCNQ1-p.R594Q hiPSC-CMs at 1/3/10 µM (by 19/26/35%) and in KCNQ1-p.A341V hiPSC-CMs at 10 µM (by 29%). No SGK1-Inh-induced FPD/APD shortening effect was observed in LQT1 KCNQ1-p.A341V hiPSC-CMs or KCNQ1-p.Y315S rabbit CMs at 0.3-3 µM. CONCLUSION: A robust SGK1-Inh-induced APD shortening was observed across different LQT2 models, species, and genetic variants but less consistently in LQT1 models. This suggests a genotype- and variant-specific beneficial effect of this novel therapeutic approach in LQTS.


Subject(s)
Induced Pluripotent Stem Cells , Long QT Syndrome , Animals , Humans , Rabbits , Glucocorticoids , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Arrhythmias, Cardiac/genetics , Myocytes, Cardiac/physiology , Action Potentials/physiology
5.
Heart Rhythm ; 20(4): 589-595, 2023 04.
Article in English | MEDLINE | ID: mdl-36610526

ABSTRACT

BACKGROUND: Drug-induced QT prolongation (DI-QTP) is a clinical entity in which administration of a human ether-à-go-go-related gene/rapid delayed rectifier potassium current blocker such as dofetilide prolongs the cardiac action potential duration (APD) and the QT interval on the electrocardiogram. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) reduces the APD at 90% repolarization (APD90) in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from patients with congenital long QT syndrome. OBJECTIVE: Here, we test the efficacy of 2 novel SGK1 inhibitors-SGK1-I1 and SGK1-I2-in iPSC-CM models of dofetilide-induced APD prolongation. METHODS: Normal iPSC-CMs were treated with dofetilide to produce a DI-QTP iPSC-CM model. SGK1-I1's and SGK1-I2's therapeutic efficacy for shortening the dofetilide-induced APD90 prolongation was compared to mexiletine. The APD90 values were recorded 4 hours after treatment using a voltage-sensing dye. RESULTS: The APD90 was prolonged in normal iPSC-CMs treated with dofetilide (673 ± 8 ms vs 436 ± 4 ms; P < .0001). While 10 mM mexiletine shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 4 to 563 ± 8 ms (46% attenuation; P < .0001), 30 nM of SGK1-I1 shortened the APD90 from 673 ± 8 to 502 ± 7 ms (72% attenuation; P < .0001). Additionally, 300 nM SGK1-I2 shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 8 to 460 ± 7 ms (90% attenuation; P < .0001). CONCLUSION: These novel SGK1-Is substantially attenuated the pathological APD prolongation in a human heart cell model of DI-QTP. These preclinical data support the development of this therapeutic strategy to counter and neutralize DI-QTP, thereby increasing the safety profile for patients receiving drugs with torsadogenic potential.


Subject(s)
Long QT Syndrome , Mexiletine , Humans , Mexiletine/pharmacology , Action Potentials , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy , Long QT Syndrome/pathology , Sulfonamides/adverse effects , Myocytes, Cardiac/pathology
6.
Circ Arrhythm Electrophysiol ; 15(12): e010915, 2022 12.
Article in English | MEDLINE | ID: mdl-36441560

ABSTRACT

BACKGROUND: Pharmacologic termination of paroxysmal supraventricular tachycardia (PSVT) often requires medically supervised intervention. Intranasal etripamil, is an investigational fast-acting, nondihydropyridine, L-type calcium channel blocker, designed for unsupervised self-administration to terminate atrioventricular nodal-dependent PSVT. Phase 2 results showed potential safety and efficacy of etripamil in 104 patients with PSVT. METHODS: NODE-301, a phase 3, multicenter, double-blind, placebo-controlled study evaluated the efficacy and safety of etripamil nasal spray administered, unsupervised in patients with symptomatic sustained PSVT. After a medically supervised etripamil test dose while in sinus rhythm, patients were randomized 2:1 to receive etripamil 70 mg or placebo. When PSVT symptoms developed, patients applied a cardiac monitor and attempted a vagal maneuver; if symptoms persisted, they self-administered blinded treatment. An independent Adjudication Committee reviewed continuous electrocardiogram recordings. The primary efficacy endpoint was termination of adjudicated PSVT within 5 hours after study drug administration. RESULTS: NODE-301 accrued 156 positively adjudicated PSVT events treated with etripamil (n=107) or placebo (n=49). The hazard ratio for the primary endpoint, time-to-conversion to sinus rhythm during the 5-hour observation period, was 1.086 (95% CI, 0.726-1.623; P=0.12). In predefined sensitivity analyses, etripamil effects (compared with placebo) occurred at 3, 5, 10, 20, and 30 minutes (P<0.05). For example, at 30 minutes, there was a 53.7% of SVT conversion in the treatment arm compared to 34.7% in the placebo arm (hazard ratio, 1.87 [95% CI, 1.09-3.22]; P=0.02). Etripamil was well tolerated; adverse events were mainly related to transient nasal discomfort and congestion (19.6% and 8.0%, respectively, of randomized treatment-emergent adverse events. CONCLUSIONS: Although the primary 5-hour efficacy endpoint was not met, analyses at earlier time points indicated an etripamil treatment effect in terminating PSVT. Etripamil self-administration during PSVT was safe and well tolerated. These results support continued clinical development of etripamil nasal spray for self-administration during PSVT in a medically unsupervised setting. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03464019.


Subject(s)
Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Humans , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/drug therapy , Nasal Sprays , Tachycardia, Paroxysmal/diagnosis , Tachycardia, Paroxysmal/drug therapy
7.
Am Heart J ; 253: 20-29, 2022 11.
Article in English | MEDLINE | ID: mdl-35728658

ABSTRACT

Presently, acute pharmacological termination of paroxysmal supraventricular tachycardia (PSVT) unresponsive to patient-initiated vagal maneuvers requires in-hospital intervention. Etripamil, a fast-acting, nondihydropyridine, L-type calcium channel blocker, is formulated as an intranasal spray to rapidly terminate atrioventricular (AV) nodal-dependent PSVT in a medically unsupervised setting. The NODE-301 study did not meet its prespecified primary end point of PSVT conversion over 5 hours following a single dose of etripamil 70 mg. However, analysis at earlier time points demonstrated etripamil treatment effect during the first 30 minutes, consistent with its expected rapid onset and short duration of action. This led to the design of the RAPID study, which includes a new dosing regimen (up to 2 etripamil 70 mg doses separated by 10 minutes) to increase the exposure and pharmacodynamic effect of etripamil. The primary objective of RAPID (NCT03464019) is to determine if etripamil self-administered by patients is superior to placebo in terminating PSVT in an at-home setting. The secondary objective is to evaluate the safety of etripamil when self-administered by patients without medical supervision. Additional efficacy end points include the proportion of patients requiring additional medical intervention in an emergency department to terminate PSVT and patient-reported outcomes. After successfully completing a test dose to assess the safety of 2 70 mg doses of etripamil during sinus rhythm, approximately 500 patients will be randomized 1:1 to etripamil or placebo to accrue 180 positively adjudicated AV nodal-dependent PSVT events for treatment with the study drug. Etripamil may offer a new alternative to the current in-hospital treatment modality, providing for safe and effective at-home termination of PSVT.


Subject(s)
Tachycardia, Paroxysmal , Tachycardia, Supraventricular , Tachycardia, Ventricular , Benzoates/therapeutic use , Humans , Tachycardia, Paroxysmal/drug therapy
8.
Clin Pharmacol Drug Dev ; 11(4): 523-534, 2022 04.
Article in English | MEDLINE | ID: mdl-35182037

ABSTRACT

Cenobamate is an antiseizure medication for uncontrolled focal seizures. This thorough QT study assessed the effects of therapeutic and supratherapeutic cenobamate doses (maximum recommended dose, 400 mg/day) on correct QT interval (QTc) in healthy adults (N = 108) randomly assigned to 1 of 3 treatments: (A) cenobamate (days 1-63) up-titrated by 50-mg increments weekly to a 200 mg/day therapeutic dose (day 35) and then by 100 mg weekly to a 500 mg/day supratherapeutic dose (day 63), with placebo-moxifloxacin (days -1 and 64); (B) moxifloxacin 400 mg (day -1; positive control), placebo-cenobamate (days 1-63), and placebo-moxifloxacin (day 64); and (C) placebo-moxifloxacin (day -1), placebo-cenobamate (days 1-64), and moxifloxacin 400 mg (day 64). The primary end point was baseline-adjusted, placebo-corrected QTc (ΔΔQTcF; corrected for heart rate [HR] by Fridericia's method) with cenobamate 200 and 500 mg/day. Baseline electrocardiographic parameters were balanced across groups. Mean ΔΔQTcF was negative throughout for cenobamate doses (largest: day 35, -10.8 milliseconds; day 63, -18.4 milliseconds). Based on concentration-QTc analysis, ∆∆QTcF effect was predicted as -9.85 and -17.14 milliseconds at mean peak plasma levels of therapeutic (200 mg/day; 23.06 µg/mL) and supratherapeutic (500 mg/day; 63.96 µg/mL) doses. Cenobamate had no clinically relevant prolonging effect on electrocardiographic parameters (eg, PR, QRS); HR effects were similar to placebo. Cenobamate showed slight dose-related shortening of QTc, but to a degree not known to be clinically relevant (no reductions ≤340 milliseconds). Cenobamate had no clinically relevant effects on HR or electrocardiographic parameters and no QTc-prolonging effect at therapeutic/supratherapeutic doses. Cenobamate is contraindicated in patients with short-QT syndrome and caution should be used when coadministering with drugs that shorten QT interval.


Subject(s)
Long QT Syndrome , Adult , Carbamates/adverse effects , Chlorophenols , Double-Blind Method , Humans , Long QT Syndrome/chemically induced , Tetrazoles
9.
J Clin Pharmacol ; 61(12): 1606-1617, 2021 12.
Article in English | MEDLINE | ID: mdl-34214210

ABSTRACT

Perhexiline has been used to treat hypertrophic cardiomyopathy. In addition to its effect on carnitine-palmitoyltransferase-1, it has mixed ion channel effects through inhibition of several cardiac ion currents. Effects on cardiac ion channels expressed in mammalian cells were assayed using a manual patch-clamp technique, action potential duration (APD) was measured in ventricular trabeculae of human donor hearts, and electrocardiogram effects were evaluated in healthy subjects in a thorough QT (TQT) study. Perhexiline blocked several cardiac ion currents at concentrations within the therapeutic range (150-600 ng/mL) with IC50 for hCav1.2 ∼ hERG < late hNav1.5. A significant APD shortening was observed in perhexiline-treated cardiomyocytes. The TQT study was conducted with a pilot part in 9 subjects to evaluate a dosing schedule that would achieve therapeutic and supratherapeutic perhexiline plasma concentrations on days 4 and 6, respectively. Guided by the results from the pilot, 104 subjects were enrolled in a parallel-designed part with a nested crossover comparison for the positive control. Perhexiline caused QTc prolongation, with the largest effect on ΔΔQTcF, 14.7 milliseconds at therapeutic concentrations and 25.6 milliseconds at supratherapeutic concentrations and a positive and statistically significant slope of the concentration-ΔΔQTcF relationship (0.018 milliseconds per ng/mL; 90%CI, 0.0119-0.0237 milliseconds per ng/mL). In contrast, the JTpeak interval was shortened with a negative concentration-JTpeak relationship, a pattern consistent with multichannel block. Further studies are needed to evaluate whether this results in a low proarrhythmic risk.


Subject(s)
Calcium Channel Blockers/pharmacology , Electrocardiography/drug effects , Perhexiline/pharmacology , Adult , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Male , Pilot Projects , Young Adult
10.
Cardiovasc Res ; 117(7): 1616-1631, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33769493

ABSTRACT

Atrial fibrillation (AF) is the most common sustained clinical arrhythmia, with a lifetime incidence of up to 37%, and is a major contributor to population morbidity and mortality. Important components of AF management include control of cardiac rhythm, rate, and thromboembolic risk. In this narrative review article, we focus on rhythm-control therapy. The available therapies for cardiac rhythm control include antiarrhythmic drugs and catheter-based ablation procedures; both of these are presently neither optimally effective nor safe. In order to develop improved treatment options, it is necessary to use preclinical models, both to identify novel mechanism-based therapeutic targets and to test the effects of putative therapies before initiating clinical trials. Extensive research over the past 30 years has provided many insights into AF mechanisms that can be used to design new rhythm-maintenance approaches. However, it has proven very difficult to translate these mechanistic discoveries into clinically applicable safe and effective new therapies. The aim of this article is to explore the challenges that underlie this phenomenon. We begin by considering the basic problem of AF, including its clinical importance, the current therapeutic landscape, the drug development pipeline, and the notion of upstream therapy. We then discuss the currently available preclinical models of AF and their limitations, and move on to regulatory hurdles and considerations and then review industry concerns and strategies. Finally, we evaluate potential paths forward, attempting to derive insights from the developmental history of currently used approaches and suggesting possible paths for the future. While the introduction of successful conceptually innovative new treatments for AF control is proving extremely difficult, one significant breakthrough is likely to revolutionize both AF management and the therapeutic development landscape.


Subject(s)
Action Potentials/drug effects , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Drug Development , Drug Discovery , Heart Conduction System/drug effects , Heart Rate/drug effects , Animals , Anti-Arrhythmia Agents/adverse effects , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Diffusion of Innovation , Disease Models, Animal , Drug Approval , Drug Development/trends , Drug Discovery/trends , Forecasting , Heart Conduction System/physiopathology , Humans , Translational Research, Biomedical
11.
Ther Innov Regul Sci ; 54(6): 1473-1476, 2020 11.
Article in English | MEDLINE | ID: mdl-32500447

ABSTRACT

Elevated blood pressure increases the risk of adverse cardiovascular events and death. Accordingly, characterizing the off-target blood pressure effects of drugs is an important component of regulatory benefit-risk assessment and post-marketing clinical decision-making. The U.S. Food and Drug Administration (FDA) released draft guidance in May 2018 outlining these considerations and seeking discussion regarding opportunities to improve or reassess methods and analytical techniques to measure and interpret the pressor effects of drugs. Toward this effort, the Duke-Margolis Center for Health Policy-under a cooperative agreement with the FDA-convened a public workshop to bring the stakeholder community together to discuss these opportunities. The following are summary statements and recommendations discussed at the workshop to improve blood pressure assessment throughout the product lifecycle, from development and regulatory review to clinical care.


Subject(s)
Pharmaceutical Preparations , Blood Pressure , Risk Assessment , United States , United States Food and Drug Administration
12.
Circ Res ; 125(9): 855-867, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31600125

ABSTRACT

Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.


Subject(s)
Cardiotoxicity/epidemiology , Cardiotoxins/toxicity , Education/standards , Research Report/standards , United States Food and Drug Administration/standards , Animals , Cardiotoxicity/prevention & control , Drug Evaluation, Preclinical/methods , Drug Evaluation, Preclinical/standards , Drug Evaluation, Preclinical/trends , Education/trends , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Research Report/trends , United States/epidemiology , United States Food and Drug Administration/trends
13.
J Pharmacol Toxicol Methods ; 98: 106582, 2019.
Article in English | MEDLINE | ID: mdl-31077805

ABSTRACT

The Safety Pharmacology Society (SPS) held a West Coast Regional Meeting in Foster City, CA on November 14, 2018 at the Gilead Sciences Inc. site. The meeting was attended by scientists from the pharmaceutical and biotechnology industry, contract research organizations (CROs) and academia. A variety of scientific topics were presented by speakers, covering a broad variety of topics in the fields of safety risk assessment; from pro-arrhythmia and contractility risk evaluation, to models of heart failure and seizure in-a-dish; and discovery sciences; from stem cells and precision medicine, to models of inherited cardiomyopathy and precision cut tissue slices. The present review summarizes the highlights of the presentations and provides an overview of the high level of innovation currently underlying many frontiers in safety pharmacology.


Subject(s)
Drug Industry/methods , Drug-Related Side Effects and Adverse Reactions/prevention & control , Pharmacology/methods , Animals , Drug Evaluation, Preclinical/methods , Humans , Risk Assessment , Societies, Pharmaceutical
15.
Ther Innov Regul Sci ; 53(4): 519-525, 2019 07.
Article in English | MEDLINE | ID: mdl-30157676

ABSTRACT

A Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA-sponsored Think Tank Meeting was convened in Washington, DC, on May 21, 2018, to bring together scientists, clinicians, and regulators from multiple geographic regions to evaluate progress to date in the Comprehensive In Vitro Proarrhythmia Assay (CiPA) Initiative, a new paradigm to evaluate proarrhythmic risk. Study reports from the 4 different components of the CiPA paradigm (ionic current studies, in silico modeling to generate a Torsade Metric Score, human induced pluripotent stem cell-derived ventricular cardiomyocytes, and clinical ECG assessments including J-Tpeakc) were presented and discussed. This paper provides a high-level summary of the CiPA data presented at the meeting.


Subject(s)
Arrhythmias, Cardiac/chemically induced , Drug Evaluation, Preclinical , Drug-Related Side Effects and Adverse Reactions/prevention & control , Biological Assay , Computer Simulation , Electrocardiography , Humans , Induced Pluripotent Stem Cells/physiology , Ion Channels/physiology , Myocytes, Cardiac
16.
Clin Pharmacol Ther ; 105(4): 943-953, 2019 04.
Article in English | MEDLINE | ID: mdl-30447156

ABSTRACT

Balanced multi-ion channel-blocking drugs have low torsade risk because they block inward currents. The Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative proposes to use an in silico cardiomyocyte model to determine the presence of balanced block, and absence of heart rate corrected J-Tpeak (J-Tpeak c) prolongation would be expected for balanced blockers. This study included three balanced blockers in a 10-subject-per-drug parallel design; lopinavir/ritonavir and verapamil met the primary end point of ΔΔJ-Tpeak c upper bound < 10 ms, whereas ranolazine did not (upper bounds of 8.8, 6.1, and 12.0 ms, respectively). Chloroquine, a predominant blocker of the potassium channel encoded by the ether-à-go-go related gene (hERG), prolonged ΔΔQTc and ΔΔJ-Tpeak c by ≥ 10 ms. In a separate crossover design, diltiazem (calcium block) did not shorten dofetilide-induced ΔQTc prolongation, but shortened ΔJ-Tpeak c and prolonged ΔTpeak -Tend . Absence of J-Tpeak c prolongation seems consistent with balanced block; however, small sample size (10 subjects) may be insufficient to characterize concentration-response in some cases.


Subject(s)
Biomarkers/metabolism , Electrocardiography/drug effects , Ion Channels/antagonists & inhibitors , Membrane Transport Modulators/therapeutic use , Pharmaceutical Preparations/administration & dosage , Adult , Cross-Over Studies , Female , Heart Rate/drug effects , Humans , Long QT Syndrome/drug therapy , Long QT Syndrome/metabolism , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Torsades de Pointes/drug therapy , Torsades de Pointes/metabolism
17.
J Clin Endocrinol Metab ; 104(2): 513-522, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30247575

ABSTRACT

Context: Increases in heart rate were seen during the clinical program for fixed-dose combination phentermine (PHEN) and topiramate (TPM), an oral medication indicated for weight management; however, the effect on cardiovascular (CV) outcomes is uncertain. Objective: The aim of the present study was to determine the extent to which the rates of major adverse CV events (MACE) in patients using PHEN and TPM (including fixed dose) differed from the MACE rates during unexposed periods. Design: Retrospective cohort study. Setting: MarketScan, US insurance billing data. Patients or Other Participants: Patients aged >18 years with ≥6 months of continuous enrollment in the database before taking PHEN and/or TPM or after stopping these medications. Interventions: PHEN and TPM, taken separately and together (including fixed dose). Main Outcome Measures: MACE, a composite of hospitalization for acute myocardial infarction and stroke and in-hospital CV death. Results: Because the outcomes are rare and the duration of medication use was brief, few events occurred. The MACE rates among current users of PHEN/TPM, fixed-dose PHEN/TPM, and PHEN were lower than those among unexposed former users. In contrast, the rate of MACE among current users of TPM was greater than among unexposed former users [incidence rate ratio: PHEN/TPM, 0.57; 95% CI, 0.19 to 1.78; fixed-PHEN/TPM, 0.24; 95% CI, 0.03 to 1.70; PHEN, 0.56; 95% CI, 0.34 to 0.91; TPM, 1.58; 95% CI, 1.33 to 1.87). Conclusions: Overall, the data indicated no increased risk of MACE for current PHEN/TPM users; however, the 95% CIs for the PHEN/TPM groups were broad, indicating that the data were compatible with a wide range of possible values.


Subject(s)
Anti-Obesity Agents/adverse effects , Myocardial Infarction/epidemiology , Phentermine/adverse effects , Stroke/epidemiology , Topiramate/adverse effects , Adolescent , Adult , Drug Combinations , Female , Heart Rate/drug effects , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/chemically induced , Myocardial Infarction/therapy , Obesity/drug therapy , Retrospective Studies , Stroke/chemically induced , Stroke/therapy , Weight Loss/drug effects , Young Adult
18.
J Am Coll Cardiol ; 72(5): 489-497, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30049309

ABSTRACT

BACKGROUND: There is no nonparenteral medication for the rapid termination of paroxysmal supraventricular tachycardia. OBJECTIVES: The purpose of this study was to assess the efficacy and safety of etripamil nasal spray, a short-acting calcium-channel blocker, for the rapid termination of paroxysmal supraventricular tachycardia (SVT). METHODS: This phase 2 study was performed during electrophysiological testing in patients with previously documented SVT who were induced into SVT prior to undergoing a catheter ablation. Patients in sustained SVT for 5 min received either placebo or 1 of 4 doses of active compound. The primary endpoint was the SVT conversion rate within 15 min of study drug administration. Secondary endpoints included time to conversion and adverse events. RESULTS: One hundred four patients were dosed. Conversion rates from SVT to sinus rhythm were between 65% and 95% in the etripamil nasal spray groups and 35% in the placebo group; the differences were statistically significant (Pearson chi-square test) in the 3 highest active compound dose groups versus placebo. In patients who converted, the median time to conversion with etripamil was <3 min. Adverse events were mostly related to the intranasal route of administration or local irritation. Reductions in blood pressure occurred predominantly in the highest etripamil dose. CONCLUSIONS: Etripamil nasal spray rapidly terminated induced SVT with a high conversion rate. The safety and efficacy results of this study provide guidance for etripamil dose selection for future studies involving self-administration of this new intranasal calcium-channel blocker in a real-world setting for the termination of SVT. (Efficacy and Safety of Intranasal MSP-2017 [Etripamil] for the Conversion of PSVT to Sinus Rhythm [NODE-1]; NCT02296190).


Subject(s)
Calcium Channel Blockers/administration & dosage , Heart Rate/drug effects , Nasal Sprays , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/drug therapy , Adult , Aged , Aged, 80 and over , Dose-Response Relationship, Drug , Double-Blind Method , Female , Follow-Up Studies , Heart Rate/physiology , Humans , Male , Middle Aged , Tachycardia, Supraventricular/physiopathology , Time Factors
19.
Am Heart J ; 199: 59-67, 2018 05.
Article in English | MEDLINE | ID: mdl-29754667

ABSTRACT

The novel direct oral anticoagulants (NOACs) represent a major advance in oral anticoagulant therapy and are replacing vitamin K antagonists as the preferred options for many indications. Given in fixed doses without routine laboratory monitoring, they have been shown to be at least as effective in reducing thromboembolic stroke as dose-adjusted warfarin in phase 3 randomized trials and less likely to cause hemorrhagic stroke. Pharmacokinetic and/or pharmacodynamic subanalyses of the major NOAC trials in patients with atrial fibrillation have established relationships between clinical characteristics, and drug levels and/or pharmacodynamic responses with both efficacy and safety. Based on these analyses, pharmaceutical manufacturers and regulatory authorities have provided contraindications and dosing recommendations based on clinical characteristics that are associated with drug levels and/or pharmacodynamic responses, stroke reduction, and bleeding risk to optimize the risk-benefit profile of the NOACs in the real world. The current fixed-dosing strategy of NOACs has triggered discussions about the potential value of laboratory monitoring and dose adjustment in customizing drug exposure to further improve the safety and efficacy of the NOACs in patients with atrial fibrillation. As there is neither high-quality evidence nor consensus about the potential role of laboratory monitoring and dose adjustment for the NOACs, a Cardiac Research Safety Consortium "Think Tank" meeting was held at the American College of Cardiology Heart House in December 2015 to discussions these issues. This manuscript reports on the deliberations and the conclusions reached at that meeting.


Subject(s)
Anticoagulants/administration & dosage , Atrial Fibrillation/drug therapy , Stroke/prevention & control , Administration, Oral , Anticoagulants/pharmacokinetics , Atrial Fibrillation/complications , Atrial Fibrillation/metabolism , Dose-Response Relationship, Drug , Humans , Stroke/metabolism
20.
PLoS One ; 13(5): e0197952, 2018.
Article in English | MEDLINE | ID: mdl-29782553

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0163619.].

SELECTION OF CITATIONS
SEARCH DETAIL
...