Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 29(39): 395702, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29972377

ABSTRACT

Studying the electrical and structural properties of the interface of the gate oxide (SiO2) with silicon carbide (4H-SiC) is a fundamental topic, with important implications for understanding and optimising the performances of metal-oxide-semiconductor field effect transistor (MOSFETs). In this paper, near interface oxide traps (NIOTs) in lateral 4H-SiC MOSFETs were investigated combining transient gate capacitance measurements (C-t) and state of the art scanning transmission electron microscopy in electron energy loss spectroscopy (STEM-EELS) with sub-nm resolution. The C-t measurements as a function of temperature indicated that the effective NIOTs discharge time is temperature independent and electrons from NIOTs are emitted toward the semiconductor via-tunnelling. The NIOTs discharge time was modelled also taking into account the interface state density in a tunnelling relaxation model and it allowed us to locate traps within a tunnelling distance of up to 1.3 nm from the SiO2/4H-SiC interface. On the other hand, sub-nm resolution STEM-EELS revealed the presence of a non-abrupt (NA) SiO2/4H-SiC interface. The NA interface shows the re-arrangement of the carbon atoms in a sub-stoichiometric SiO x matrix. A mixed sp2/sp3 carbon hybridization in the NA interface region suggests that the interfacial carbon atoms have lost their tetrahedral SiC coordination.

2.
Nanoscale Res Lett ; 6(1): 158, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21711667

ABSTRACT

This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM.The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

SELECTION OF CITATIONS
SEARCH DETAIL
...