Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 21(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37233486

ABSTRACT

Cold environments include deep ocean, alpine, and polar areas. Even if the cold conditions are harsh and extreme for certain habitats, various species have been adapted to survive in them. Microalgae are among the most abundant microbial communities which have adapted to live in low light, low temperature, and ice coverage conditions typical of cold environments by activating different stress-responsive strategies. These species have been shown to have bioactivities with possible exploitation capabilities for human applications. Even if they are less explored compared to species living in more accessible sites, various activities have been highlighted, such as antioxidant and anticancer activities. This review is focused on summarizing these bioactivities and discussing the possible exploitation of cold-adapted microalgae. Thanks to the possibility of mass cultivating algae in controlled photobioreactors, eco-sustainable exploitation is in fact possible by sampling a few microalgal cells without impacting the environment.


Subject(s)
Microalgae , Humans , Ecosystem , Cold Temperature , Antioxidants , Plants , Biotechnology
2.
Microorganisms ; 11(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36985275

ABSTRACT

The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.

3.
Front Microbiol ; 13: 722900, 2022.
Article in English | MEDLINE | ID: mdl-35154048

ABSTRACT

Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. However, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here, we report data on the bacterial diversity in relation to phytoplankton community structure in the surface waters of the Ross Sea during the Austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay (TNB) coastal waters and the Ross Sea Open Waters (RSOWs), with a dominance of members belonging to the bacterial phyla Bacteroidetes and Proteobacteria. In the TNB coastal area, microbial communities were characterized by a higher abundance of sequences related to heterotrophic bacterial genera such as Polaribacter spp., together with higher phytoplankton biomass and higher relative abundance of diatoms. On the contrary, the phytoplankton biomass in the RSOW were lower, with relatively higher contribution of haptophytes and a higher abundance of sequences related to oligotrophic and mixothrophic bacterial groups like the Oligotrophic Marine Gammaproteobacteria (OMG) group and SAR11. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provide new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters, suggesting that specific rather than random interaction contribute to the organic matter cycling in the Southern Ocean.

4.
J Phycol ; 57(2): 541-550, 2021 04.
Article in English | MEDLINE | ID: mdl-33283272

ABSTRACT

Antarctic regions are known to be mainly dominated by diatoms in the water column under sea ice. In this study, we report for the first time two distinct phytoplankton blooms dominated by nanoflagellates (<15 µm) under the landfast ice in Terra Nova Bay during the late spring-early summer 2015/2016. The taxa included the pelagic Bolidophyceae Pentalamina corona, the Chrysophyceae Ochromonas spp. and the Chlorophyceae Chlamydomonas spp., typically found in fresh waters, and the Prymnesiophyceae Phaeocystis antarctica usually observed dominating in polynya areas. These species represented from 40% to 91% of the total phytoplankton community, a percentage contrasting with the prevalence of diatoms found previously. The dominance of nanoflagellates, rather than diatoms, during late spring and early summer may have important implications for trophic relationships in Antarctic waters and the presence of typical freshwater species could indicate a great input of continental waters related to environmental changes.


Subject(s)
Diatoms , Haptophyta , Antarctic Regions , Phytoplankton , Seasons
5.
Microorganisms ; 8(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317109

ABSTRACT

The Arctic and Antarctic regions constitute 14% of the total biosphere. Although they differ in their physiographic characteristics, both are strongly affected by snow and ice cover changes, extreme photoperiods and low temperatures, and are still largely unexplored compared to more accessible sites. This review focuses on microalgae and bacteria from polar marine environments and, in particular, on their physiological and molecular responses to harsh environmental conditions. The data reported in this manuscript show that exposure to cold, increase in CO2 concentration and salinity, high/low light, and/or combination of stressors induce variations in species abundance and distribution for both polar bacteria and microalgae, as well as changes in growth rate and increase in cryoprotective compounds. The use of -omics techniques also allowed to identify specific gene losses and gains which could have contributed to polar environmental adaptation, and metabolic shifts, especially related to lipid metabolism and defence systems, such as the up-regulation of ice binding proteins, chaperones and antioxidant enzymes. However, this review also provides evidence that -omics resources for polar species are still few and several sequences still have unknown functions, highlighting the need to further explore polar environments, the biology and ecology of the inhabiting bacteria and microalgae, and their interactions.

6.
Mar Environ Res ; 160: 104980, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32907718

ABSTRACT

While the effects of industrial contamination in coastal areas may persist for years in benthos communities, plankton should not show permanent impairments because of their high spatial dynamics, fast turnover times and pronounced seasonality. To test this hypothesis, in 2019 we conducted five surveys in the Bay of Pozzuoli (Gulf of Naples, Mediterranean Sea), in front of a dismissed steel factory and in the adjacent inshore coastal waters. High seasonal variability was observed for bacteria, phytoplankton and mesozooplankton, whereas plankton spatial gradients were relatively smooth during each survey. Plankton biomass and diversity did not reveal any effects of past industrial activities not even at the innermost stations of the Bay, which however showed some signals of present anthropogenic pressure. Hydrodynamic and morphological features likely play a prominent role in maintaining a relatively good status of the plankton of the Bay, which hints at the relevance of coastal circulation and meteorological dynamics to revitalize areas impacted by human activities.


Subject(s)
Bays , Phytoplankton , Plankton , Biomass , Mediterranean Sea
7.
Mar Environ Res ; 151: 104733, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31351585

ABSTRACT

This study focuses on the potential explanations for a Phaeocystis antarctica summer bloom occurred in stratified waters of Terra Nova Bay (TNB) - which is part of the Antarctic Special Protected Area (n.161) in the Ross Sea - trough a multi-parameter correlative approach. Many previous studies have highlighted that water column stratification typically favors diatom dominance compared to the colonial haptophyte P. antarctica, in the Ross Sea, and this correlation has often been used to explain the historic dominance of diatoms in TNB. To explore the spatial and temporal progression of P. antarctica bloom in coastal waters, four stations were sampled three times each between December 31, 2009 and January 13, 2010. Taxonomic and pigment composition of phytoplankton communities, macro-nutrient concentrations and various different indices, all indicated the relative dominance of P. antarctica. Cell abundances revealed that P. antarctica contributed 79% of total cell counts in the upper 25 m and 93% in the lower photic zone. Similarly, a strong correlation was observed between Chl-a and the Hex:Fuco pigment ratio, corroborating the microscopic analyses. Recent studies have shown that iron can trigger colonial P. antarctica blooms. Based on the Hex:Chl-c3 proxy for iron limitation in P. antarctica, we hypothesize that anomalously higher iron fluxes were responsible for the unusual bloom of colonial P. antarctica observed in TNB.


Subject(s)
Eutrophication , Haptophyta , Phytoplankton , Antarctic Regions , Bays , Seasons
8.
J Eukaryot Microbiol ; 66(5): 849-852, 2019 09.
Article in English | MEDLINE | ID: mdl-30779253

ABSTRACT

A bloom of loricate choanoflagellates was recorded for the first time in the Ross Sea polynya during the austral summer 2017. Both individual cells and uncommon large-size colonies (200 µm length) represent the 42-55% of the total plankton community (i.e. specimens from 5 to 150 µm length). Choanoflagellates serve as a link between low and mid trophic levels since they prey on bacteria and in turn are ingested by zooplankton. This twofold role and the unusual abundance recorded in the Antarctic ecosystem may have relevant but still unknown effects on food web structure and dynamics in that area.


Subject(s)
Choanoflagellata/growth & development , Animals , Antarctic Regions , Ecosystem , Seasons , Zooplankton/growth & development , Zooplankton/physiology
9.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article in English | MEDLINE | ID: mdl-28667110

ABSTRACT

Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for <0.1% of the total sequence abundance), the majority of which were unique to each site. The relationship between 16S rRNA and the 16S rRNA gene, i.e., between potential metabolic activity and abundance, was positive for the whole community. However, analysis of individual OTUs revealed high rRNA-to-rRNA gene ratios for most (71.6% ± 16.7%) of the rare taxa, suggesting that these low-abundance organisms were potentially active and hence might be playing an important role in ecosystem diversity and functioning in the GON.IMPORTANCE The study of bacterioplankton in coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental factors leading to their heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in community composition and potentially holding a key role in ecosystem functioning.


Subject(s)
Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , Seawater/microbiology , Bacteria/classification , Bacteria/genetics , Chlorophyll/metabolism , Chlorophyll A , Ecosystem , Mediterranean Sea , Phylogeny
10.
PLoS One ; 12(4): e0176033, 2017.
Article in English | MEDLINE | ID: mdl-28430813

ABSTRACT

During the austral summer of 2014, an oceanographic cruise was conducted in the Ross Sea in the framework of the RoME (Ross Sea Mesoscale Experiment) Project. Forty-three hydrological stations were sampled within three different areas: the northern Ross Sea (RoME 1), Terra Nova Bay (RoME 2), and the southern Ross Sea (RoME 3). The ecological and photophysiological characteristics of the phytoplankton were investigated (i.e., size structure, functional groups, PSII maximum quantum efficiency, photoprotective pigments), as related to hydrographic and chemical features. The aim was to identify the mechanisms that modulate phytoplankton blooms, and consequently, the fate of organic materials produced by the blooms. The observed biomass standing stocks were very high (e.g., integrated chlorophyll-a up to 371 mg m-2 in the top 100 m). Large differences in phytoplankton community composition, relative contribution of functional groups and photosynthetic parameters were observed among the three subsystems. The diatoms (in different physiological status) were the dominant taxa in RoME 1 and RoME 3; in RoME 1, a post-bloom phase was identified, whereas in RoME 3, an active phytoplankton bloom occurred. In RoME 2, diatoms co-occurred with Phaeocystis antarctica, but were vertically segregated by the upper mixed layer, with senescent diatoms dominating in the upper layer, and P. antarctica blooming in the deeper layer. The dominance of the phytoplankton micro-fraction over the whole area and the high Chl-a suggested the prevalence of non-grazed large cells, independent of the distribution of the two functional groups. These data emphasise the occurrence of significant temporal changes in the phytoplankton biomass in the Ross Sea during austral summer. The mechanisms that drive such changes and the fate of the carbon production are probably related to the variations in the limiting factors induced by the concurrent hydrological modifications to the Ross Sea, and they remain to be fully clarified. The comparison of conditions observed during summer 2014 and those reported for previous years reveal considerably different ecological assets that might be the result of current climate change. This suggests that further changes can be expected in the future, even at larger oceanic scales.


Subject(s)
Phytoplankton/growth & development , Antarctic Regions , Climate Change , Seasons
11.
Sci Total Environ ; 562: 588-595, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27110973

ABSTRACT

A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48mmoll(-1) were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8mmoll(-1) and is also resistant to Cd(II) and Mn(II) with MIC of 2.22mmoll(-1) and 18.20mmoll(-1), respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48mmoll(-1) or 1.20mmoll(-1) Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ.


Subject(s)
Bacillus/metabolism , Lead/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Bacillus/genetics , Bacteria , Biodegradation, Environmental , Biofilms , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Italy , Microscopy, Electron, Scanning , RNA, Ribosomal, 16S , Rivers/chemistry , Rivers/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...