Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31741549

ABSTRACT

The effect of subconcussive head impact exposure during contact sports, including American football, on brain health is poorly understood particularly in young and adolescent players, who may be more vulnerable to brain injury during periods of rapid brain maturation. This study aims to quantify the association between cumulative effects of head impact exposure from a single season of football on white matter (WM) integrity as measured with diffusion MRI. The study targets football players aged 9-18 years old. All players were imaged pre- and post-season with structural MRI and diffusion tensor MRI (DTI). Fractional Anisotropy (FA) maps, shown to be closely correlated with WM integrity, were computed for each subject, co-registered and subtracted to compute the change in FA per subject. Biomechanical metrics were collected at every practice and game using helmet mounted accelerometers. Each head impact was converted into a risk of concussion, and the risk of concussion-weighted cumulative exposure (RWE) was computed for each player for the season. Athletes with high and low RWE were selected for a two-category classification task. This task was addressed by developing a 3D Convolutional Neural Network (CNN) to automatically classify players into high and low impact exposure groups from the change in FA maps. Using the proposed model, high classification performance, including ROC Area Under Curve score of 85.71% and F1 score of 83.33% was achieved. This work adds to the growing body of evidence for the presence of detectable neuroimaging brain changes in white matter integrity from a single season of contact sports play, even in the absence of a clinically diagnosed concussion.

2.
Article in English | MEDLINE | ID: mdl-31787799

ABSTRACT

The effect of repetitive sub-concussive head impact exposure in contact sports like American football on brain health is poorly understood, especially in the understudied populations of youth and high school players. These players, aged 9-18 years old may be particularly susceptible to impact exposure as their brains are undergoing rapid maturation. This study helps fill the void by quantifying the association between head impact exposure and functional connectivity, an important aspect of brain health measurable via resting-state fMRI (rs-fMRI). The contributions of this paper are three fold. First, the data from two separate studies (youth and high school) are combined to form a high-powered analysis with 60 players. These players experience head acceleration within overlapping impact exposure making their combination particularly appropriate. Second, multiple features are extracted from rs-fMRI and tested for their association with impact exposure. One type of feature is the power spectral density decomposition of intrinsic, spatially distributed networks extracted via independent components analysis (ICA). Another feature type is the functional connectivity between brain regions known often associated with mild traumatic brain injury (mTBI). Third, multiple supervised machine learning algorithms are evaluated for their stability and predictive accuracy in a low bias, nested cross-validation modeling framework. Each classifier predicts whether a player sustained low or high levels of head impact exposure. The nested cross validation reveals similarly high classification performance across the feature types, and the Support Vector, Extremely randomized trees, and Gradboost classifiers achieve F1-score up to 75%.

3.
Hum Brain Mapp ; 38(6): 3175-3189, 2017 06.
Article in English | MEDLINE | ID: mdl-28345171

ABSTRACT

Atlases constructed using diffusion-weighted imaging are important tools for studying human brain development. Atlas construction is in general a two-step process involving spatial registration and fusion of individual images. The focus of most studies so far has been on improving the accuracy of registration while image fusion is commonly performed using simple averaging, often resulting in fuzzy atlases. In this article, we propose a patch-based method for diffusion-weighted (DW) atlas construction. Unlike other atlases that are based on the diffusion tensor model, our atlas is model-free and generated directly from the diffusion-weighted images. Instead of independently generating an atlas for each gradient direction and hence neglecting angular image correlation, we propose to construct the atlas by jointly considering DW images of neighboring gradient directions. We employ a group regularization framework where local patches of angularly neighboring images are constrained for consistent spatio-angular atlas reconstruction. Experimental results confirm that our atlas, constructed for neonatal data, reveals more structural details with higher fractional anisotropy than the atlas generated without angular consistency as well as the average atlas. Also the normalization of test subjects to the proposed atlas results in better alignment of brain structures. Hum Brain Mapp 38:3175-3189, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/growth & development , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Neural Pathways/diagnostic imaging , Neural Pathways/growth & development , Algorithms , Brain Mapping , Female , Humans , Infant , Infant, Newborn , Male , White Matter/diagnostic imaging
4.
Sci Rep ; 7: 41069, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120883

ABSTRACT

Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods.


Subject(s)
Brain/diagnostic imaging , Early Diagnosis , Neuroimaging/methods , Parkinson Disease/diagnosis , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Tomography, Emission-Computed, Single-Photon
5.
Article in English | MEDLINE | ID: mdl-31650132

ABSTRACT

The effect of Type 2 Diabetes (T2D) on brain health is poorly understood. This study aims to quantify the association between T2D and perfusion in the brain. T2D is a very common metabolic disorder that can cause long term damage to the renal and cardiovascular systems. Previous research has discovered the shape, volume and white matter microstructures in the brain to be significantly impacted by T2D. We propose a fully-connected deep neural network to classify the regional Cerebral Blood Flow into low or high levels, given 16 clinical measures as predictors. The clinical measures include diabetes, renal, cardiovascular and demographics measures. Our model enables us to discover any nonlinear association which might exist between the input features and target. Moreover, our end-to-end architecture automatically learns the most relevant features and combines them without the need for applying a feature selection method. We achieved promising classification performance. Furthermore, in comparison with six (6) classical machine learning algorithms and six (6) alternative deep neural networks similarly tuned for the task, our proposed model outperformed all of them.

6.
Article in English | MEDLINE | ID: mdl-28070568

ABSTRACT

Atlases constructed using diffusion-weighted imaging (DWI) are important tools for studying human brain development. Atlas construction is in general a two-step process involving image registration and image fusion. The focus of most studies so far has been on improving registration thus image fusion is commonly performed using simple averaging, often resulting in fuzzy atlases. In this paper, we propose a patch-based method for DWI atlas construction. Unlike other atlases that are based on the diffusion tensor model, our atlas is model-free. Instead of generating an atlas for each gradient direction independently and hence neglecting inter-image correlation, we propose to construct the atlas by jointly considering diffusion-weighted images of neighboring gradient directions. We employ a group regularization framework where local patches of angularly neighboring images are constrained for consistent spatio-angular atlas reconstruction. Experimental results verify that our atlas, constructed for neonatal data, reveals more structural details compared with the average atlas especially in the cortical regions. Our atlas also yields greater accuracy when used for image normalization.

SELECTION OF CITATIONS
SEARCH DETAIL
...