Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 61(3): 699-708, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36585561

ABSTRACT

Electromagnetic navigation bronchoscopy (ENB) uses electromagnetic positioning technology to guide the bronchoscope to accurately and quickly reach the lesion along the planned path. However, enormous data in high-resolution lung computed tomography (CT) and the complex structure of multilevel branching bronchial tree make fast path search challenging for path planning. We propose a coordinate-based fast lightweight path search (CPS) algorithm for ENB. First, the centerline is extracted from the bronchial tree by applying topological thinning. Then, Euclidean-distance-based coordinate search is applied. The centerline points are represented by their coordinates, and adjacent points along the navigation path are selected considering the shortest Euclidean distance to the target on the centerline nearest the lesion. From the top of the trachea centerline, search is repeated until reaching the target. In 50 high-resolution lung CT images acquired from five scanners, the CPS algorithm achieves accuracy, average search time, and average memory consumption of 100%, 88.5 ms, and 166.0 MB, respectively, reducing search time by 74.3% and 73.1% and memory consumption by 83.3% and 83.0% compared with Dijkstra and A* algorithms, respectively. CPS algorithm is suitable for path search in multilevel branching bronchial tree navigation based on high-resolution lung CT images.


Subject(s)
Bronchoscopy , Lung Neoplasms , Humans , Bronchoscopy/methods , Lung Neoplasms/pathology , Lung/pathology , Electromagnetic Phenomena , Algorithms
2.
Phys Med Biol ; 66(2): 025001, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33181494

ABSTRACT

Electromagnetic-based navigation bronchoscopy requires accurate and robust estimation of the bronchoscope position inside the bronchial tree. However, respiratory motion, coughing, patient movement, and airway deformation inflicted by bronchoscope significantly hinder the accuracy of intraoperative bronchoscopic localization. In this study, a real-time and automatic registration procedure was proposed to superimpose the current location of the bronchoscope to corresponding locations on a centerline extracted from bronchial computed tomography (CT) images. A centerline-guided Gaussian mixture model (CG-GMM) was introduced to register a bronchoscope's position concerning extracted centerlines. A GMM was fitted to bronchoscope positions where the orientation likelihood was chosen to assign the membership probabilities of the mixture model, which led to preserving the global and local structures. The problem was formulated and solved under the expectation maximization framework, where the feature correspondence and spatial transformation are estimated iteratively. Validation was performed on a dynamic phantom with four different respiratory motions and four human real bronchoscopy (RB) datasets. Results of the experiments conducted on the bronchial phantom showed that the average positional tracking error using the proposed approach was equal to 1.98 [Formula: see text] 0.98 mm that was reduced in comparison with independent electromagnetic tracking (EMT), iterative closest point (ICP), and coherent point drift (CPD) methods by 64%, 58%, and 53%, respectively. In the patient assessment part of the study, the average positional tracking error was 4.73 [Formula: see text] 4.76 mm and compared to ICP, and CPD methods showed 31.4% improvement of successfully tracked frames. Our approach introduces a novel method for real-time respiratory motion compensation that provides reliable guidance during bronchoscopic interventions and, thus could increase the diagnostic yield of transbronchial biopsy.


Subject(s)
Bronchoscopes , Movement , Algorithms , Bronchi/diagnostic imaging , Electromagnetic Phenomena , Humans , Normal Distribution , Phantoms, Imaging , Tomography, X-Ray Computed
3.
Appl Biochem Biotechnol ; 191(3): 1280-1293, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32086708

ABSTRACT

Pharmacotherapy and imaging are two critical facets of cancer therapy. Carbon nanotubes and their modified species such as magnetic or gold nanoparticle conjugated ones they have been introduced as good candidates for both purposes. Gold nanoparticles enhance effects of X-rays during radiotherapy. Nanomaterial-mediated radiofrequency (RF) hyperthermia refers to using RF to heat tumors treated with nanomaterials for cancer therapy. The combination of hyperthermia and radiotherapy, synergistically, causes a significant reduction in X-ray doses. The present study was conducted to investigate the ability and efficiency of the multi-walled carbon nanotubes functionalized with magnetic Fe3O4 and gold nanoparticles (mf-MWCNT/AuNPs) for imaging and cancer therapy. The mf-MWCNT/AuNPs were utilized for imaging approaches such as ultrasounds, CT scan, and MRI. They were also examined in thermotherapy and radiotherapy. The MCF-7 cell line was used as an in vitro model to study thermotherapy and radiotherapy. The mf-MWCNT/AuNPs are beneficial as a contrast agent in imaging by ultrasounds, CT scan, and MRI. They are also radio waves and X-rays absorbent and enhance the efficiency of thermotherapy and radiotherapy in the elimination of cancer cells. The valuable properties of mf-MWCNT/AuNPs in radio- and thermotherapies and imaging strategies make them a good candidate as a multimodal tool in cancer therapy. Graphical Abstract The mf-MWCNT/AuNPs are beneficial as a contrast agent in imaging by US (ultrasounds), CT scan, and MRI. They are also radio waves and X-rays absorbent and enhance the efficiency of thermotherapy and radiotherapy in the elimination of cancer cells. The valuable properties of the mf-MWCNT/AuNPs in radio- and thermotherapies and imaging strategies make them a good candidate as a multimodal tool in cancer therapy.


Subject(s)
Gold/chemistry , Hyperthermia, Induced/instrumentation , Nanomedicine/methods , Nanotubes, Carbon/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Contrast Media , Ferrosoferric Oxide , Humans , Hyperthermia, Induced/methods , MCF-7 Cells , Magnetic Resonance Imaging , Metal Nanoparticles/chemistry , Nanostructures , Pyridines/chemistry , Tomography, X-Ray Computed , Ultrasonography
4.
Int J Med Robot ; 16(1): e2035, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31489972

ABSTRACT

BACKGROUND: Electromagnetic (EM)-based navigation methods without line-of-sight restrictions may improve lymph node sampling precision in transbronchial needle aspiration (TBNA) procedure. However, EM tracking susceptibility to metallic objects severely declines its precision. METHOD: We proposed to track the location of a tool in a dynamic bronchial phantom and compensate field distortion in a real-time procedure. Extended Kalman filter simultaneous localization and mapping (EKF-SLAM) algorithm employ the bronchial motion and observations of a redundant sensor. The proposed approach was applied to the phantom with four different amplitudes of breathing motion in the presence of two types of field-distorting objects. RESULTS: The proposed approach improved the accuracy of EM tracking on average from 18.94 ±1.17 mm to 4.59 ±0.29 mm and from 14.2 ±0.69 mm to 4.31 ±0.18mm in the presence of steel and aluminum, respectively. CONCLUSIONS: With EM tracking position error reduction based on the EKF-SLAM technique, the approach is appeared promising for a navigated ultrasound TBNA procedure.


Subject(s)
Bronchi/pathology , Electromagnetic Fields , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Bronchoscopy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...