Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(27)2021 May 28.
Article in English | MEDLINE | ID: mdl-33946062

ABSTRACT

Dislocations often occur in thin films with large misfit strain as a result of strain energy accumulation and can drastically change the film properties. Here the structure and dislocations in oxide heterostructures with large misfit strain are investigated on atomic scale. When grown on SrTiO3(001), the dislocations in both the monolithic BaTiO3thin film and its superlattices with SrIrO3appear above a critical thickness around 6 nm. The edge component of the dislocations is seen in both cases with the Burgers vector ofa⟨100⟩. However, compared to monolithic BaTiO3, the dislocation density is slightly lower in BaTiO3/SrIrO3superlattices. In the superlattice, when considering the SrTiO3lattice constant as the reference, BaTiO3has a larger misfit strain comparing with SrIrO3. It is found that in both cases, the formation of dislocation is only affected by the critical thickness of the film with larger lattice misfit (BaTiO3), regardless of the existence of a strong octahedral tilt/rotation mismatch at BaTiO3/SrIrO3interface. Our findings suggest that it is possible to control the position of dislocations, an important step toward defect engineering.

2.
Proc Natl Acad Sci U S A ; 116(21): 10309-10316, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31068468

ABSTRACT

Interfaces between transition metal oxides are known to exhibit emerging electronic and magnetic properties. Here we report intriguing magnetic phenomena for La2/3Sr1/3MnO3 films on an SrTiO3 (001) substrate (LSMO/STO), where the interface governs the macroscopic properties of the entire monolithic thin film. The interface is characterized on the atomic level utilizing scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS), and density functional theory (DFT) is employed to elucidate the physics. STEM-EELS reveals mixed interfacial stoichiometry, subtle lattice distortions, and oxidation-state changes. Magnetic measurements combined with DFT calculations demonstrate that a unique form of antiferromagnetic exchange coupling appears at the interface, generating a novel exchange spring-type interaction that results in a remarkable spontaneous magnetic reversal of the entire ferromagnetic film, and an inverted magnetic hysteresis, persisting above room temperature. Formal oxidation states derived from electron spectroscopy data expose the fact that interfacial oxidation states are not consistent with nominal charge counting. The present work demonstrates the necessity of atomically resolved electron microscopy and spectroscopy for interface studies. Theory demonstrates that interfacial nonstoichiometry is an essential ingredient, responsible for the observed physical properties. The DFT-calculated electrostatic potential is flat in both the LSMO and STO sides (no internal electric field) for both Sr-rich and stoichiometric interfaces, while the DFT-calculated charge density reveals no charge transfer/accumulation at the interface, indicating that oxidation-state changes do not necessarily reflect charge transfer and that the concept of polar mismatch is not applicable in metal-insulator polar-nonpolar interfaces.

3.
Sci Adv ; 5(5): eaav2336, 2019 May.
Article in English | MEDLINE | ID: mdl-31139745

ABSTRACT

Interest in high-spin organic materials is driven by opportunities to enable far-reaching fundamental science and develop technologies that integrate light element spin, magnetic, and quantum functionalities. Although extensively studied, the intrinsic instability of these materials complicates synthesis and precludes an understanding of how fundamental properties associated with the nature of the chemical bond and electron pairing in organic materials systems manifest in practical applications. Here, we demonstrate a conjugated polymer semiconductor, based on alternating cyclopentadithiophene and thiadiazoloquinoxaline units, that is a ground-state triplet in its neutral form. Electron paramagnetic resonance and magnetic susceptibility measurements are consistent with a high-to-low spin energy gap of 9.30 × 10-3 kcal mol-1. The strongly correlated electronic structure, very narrow bandgap, intramolecular ferromagnetic coupling, high electrical conductivity, solution processability, and robust stability open access to a broad variety of technologically relevant applications once thought of as beyond the current scope of organic semiconductors.

SELECTION OF CITATIONS
SEARCH DETAIL
...