Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(41): 38539-38545, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37867665

ABSTRACT

The application of nanoparticles (NPs) in the oil and gas industry has received wide attention in recent years because it is increasingly being considered a promising approach to recovering trapped oil in conventional hydrocarbon reservoirs. Numerous studies have demonstrated that combining nanoparticles with a surfactant can enhance surfactant performance by changing the interfacial properties of the solution when it comes in contact with crude oil and rock surfaces. However, more information and additional experimental data are required concerning the application of titanium dioxide nanoparticles in alkyl ethoxy carboxylic surfactants. In this study, we measure the changes in interfacial tension and wettability due to the addition of titanium dioxide nanoparticles (0, 100, 250, and 500 ppm) in alkyl ethoxy carboxylic surfactant using a spinning drop tensiometer and contact angle measurements. The interfacial tension of the crude oil-water (surfactant) system decreases by approximately two orders of magnitude with an increasing titanium dioxide concentration, exhibiting a minimum value of 5.85 × 10-5 mN/m. Similarly, the contact angle decreases on the surface of the Berea sandstone by combining the surfactant with titanium dioxide, reaching a minimum contact angle of 8.8°. These results demonstrate the potential of this new approach to maximize the recovery of trapped oil and significantly improve oil production.

2.
Heliyon ; 9(1): e12823, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685376

ABSTRACT

Trade-off issue and membrane fouling remain two major issues in the utilization of membrane technology for the water treatment due to reduced membrane permeability and lifetime. In our study, we employed 3-aminopropyltriethoxysilane modified bentonite (BNTAPS) as an anti-fouling modifier to prepare polyvinylidene fluoride (PVDF)-based membranes via the phase inversion method. The effects of BNTAPS concentration on the physical, mechanical, morphological, and filtration performance of the hybrid membranes have been investigated. It was found that the addition of BNTAPS improved the hydrophilicity of the membrane revealed by the decreased water contact angle. Consequently, the pure water flux of PVDF membrane containing 0.5% BNTAPS (PVDF/BNTAPS0.5%) increased to 35.5 L m-2 h-1. Moreover, the PVDF/BNTAPS membrane showed a smaller pore diameter and porosity compared to pristine PVDF. The membrane performance evaluation was carried out using cationic and anionic dyes, i.e., methylene blue (MB) and acid yellow (AY17), respectively. Our study revealed that the rejection of each dye was slightly increased for the PVDF/BNTAPS0.5%. However, the flux recovery rate of the PVDF/BNTAPS membrane significantly improved, which directly prolonged the membrane lifetime.

SELECTION OF CITATIONS
SEARCH DETAIL
...