Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 212, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167634

ABSTRACT

On Sept. 19th, 2021, the largest historical eruption on the island of La Palma began, which had a significant scientific, social, and economic impact. The 2021 Tajogaite eruption was characterised by short precursors, lasting only 8 days. The seismicity started on Sept. 11th with a westward and upward migration of hypocenters. Permanent GNSS stations started recording deformation on Sept. 12th on the island's western side, which reached more than 15 cm just before the eruption. After the eruption onset, the ground deformation increased, reaching a maximum on Sept. 22nd and showing a nearly steady deflation trend in the following months. To better understand the dynamics of the eruption, we exploited a joint dataset of GNSS and Sentinel-1 SBAS time series along both ascending and descending orbits. To obtain the geometry of the causative source of the ground deformation, we combined the result of a preliminary non-linear inversion and the precise location of the seismicity. The resulting geometry of the source is that of a twisted dike bending eastward. We performed inverse modelling to obtain the spatiotemporal kinematics of the opening function of the dike. The forward modelling has been realised using a 3D finite-element approach considering the island's topography. Our findings reveal a close correspondence between the magmatic intrusion and pre-eruptive seismicity. The ascent of the magma occurred along two branches, and the rheology of a previously identified ductile layer strongly affected the magma propagation process. Finally, we found evidence of an early shallow deformation, which we interpret as the effect of ascending hydrothermal fluids. Our findings highlight the need for advanced modelling to understand pre-eruptive processes in basaltic volcanoes.

2.
Sci Rep ; 13(1): 12039, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491500

ABSTRACT

On Sept. 19th, 2021, a volcanic eruption began on the island of La Palma (Canary Islands, Spain). The pre-eruptive episode was characterized by seismicity and ground deformation that started only 9.5 days before the eruption. In this study, we applied seismic interferometry to the data recorded by six broadband seismic stations, allowing us to estimate velocity variations during the weeks preceding the eruption. About 9.5 days before the eruption, we observed a reduction in the seismic velocities is registered next to the eruptive centers that opened later. Furthermore, this zone overlaps with the epicenters of a cluster of volcano-tectonic earthquakes located at shallow depth (< 4 km) and detached from the main cluster of deeper seismicity. We interpret the decrease in seismic velocities and the occurrence of such a shallow earthquake cluster as the effect of hydrothermal fluid released by the ascending magma batch and reaching the surface faster than the magma itself.

3.
Science ; 298(5595): 1009-12, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-12364622

ABSTRACT

Analysis of global positioning system data shows that the rate of crustal deformations in the Tokai region of Japan, a seismic gap area, changed over the past 18 months. Kalman filtering analysis shows aseismic slip on the plate boundary in the western Tokai region centered on Lake Hamana, adjacent to the anticipated Tokai earthquake source area. The cumulative moment magnitude reaches 6.7 in June 2002 with a relative slip increase northeast of Lake Haman from January 2002. An existence of aseismic slip in the western Tokai supports the hypothesis of a silent event as the cause of uplifting several days before the 1944 Tonankai earthquake.

4.
Nature ; 419(6902): 58-61, 2002 Sep 05.
Article in English | MEDLINE | ID: mdl-12214230

ABSTRACT

Magma intrusions and eruptions commonly produce abrupt changes in seismicity far from magma conduits that cannot be associated with the diffusion of pore fluids or heat. Such 'swarm' seismicity also migrates with time, and often exhibits a 'dog-bone'-shaped distribution. The largest earthquakes in swarms produce aftershocks that obey an Omori-type (exponential) temporal decay, but the duration of the aftershock sequences is drastically reduced, relative to normal earthquake activity. Here we use one of the most energetic swarms ever recorded to study the dependence of these properties on the stress imparted by a magma intrusion. A 1,000-fold increase in seismicity rate and a 1,000-fold decrease in aftershock duration occurred during the two-month-long dyke intrusion. We find that the seismicity rate is proportional to the calculated stressing rate, and that the duration of aftershock sequences is inversely proportional to the stressing rate. This behaviour is in accord with a laboratory-based rate/state constitutive law, suggesting an explanation for the occurrence of earthquake swarms. Any sustained increase in stressing rate--whether due to an intrusion, extrusion or creep event--should produce such seismological behaviour.

SELECTION OF CITATIONS
SEARCH DETAIL
...