Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Open Ophthalmol ; 8(Suppl 2): A15-A16, 2023 08.
Article in English | MEDLINE | ID: mdl-37604568

ABSTRACT

INTRODUCTION: The quality of the endothelial graft is critical to the success of DMEK and to the survival time of the graft. The peeling technique, preservation method, and skill level of graft preparers need to be evaluated and validated. The most reliable method of evaluation is the viability test based on a triple staining of Hoechst- Ethidium-Calcein AM (H-E-C) which allows the determination of the total number of viable cells on the graft. However, this test has some shortcomings for DMEK grafts: 1) The undesirable fluorescence of the Calcein AM stain prevents accurate viability analysis, especially in cases where the graft is attached to the cornea for preservation; 2) Incompatibility with immunofluorescence (IF) that could provide additional information. The objective of this study is to develop technical tricks to overcome these drawbacks. METHODS: Two strategies were employed to improve Calcein AM staining: 1. Increase the specific fluorescence intensity by changing the diluent and the concentration of Calcein AM; 2. Decrease undesired fluorescence from keratocytes by adding Trypan Blue (BT). In order to combine the IF after the HEC test, an extension wash in PBS was performed. RESULTS: Calcein AM at 4µM diluted in OptiMEM increased fluorescence intensity 3-fold (p=0.0017, n=5) compared with conventional staining at 2µM in PBS. BT decreased the undesired fluorescence of Calcein and thus optimized count variability between different operators by 42% (p=0.0027, n=10) and saved 40% (p=0.0002, n=10) of count time. To perform IF after HEC, prolonged washing in PBS is an effective method to remove residual Calcein fluorescence and allows release of the FITC/Alexa 488 filter. CONCLUSION: This study provides effective technical tips for optimizing the endothelial viability assay using Calcein AM and for performing IF after the viability assay.


Subject(s)
Fluorescent Dyes , Staining and Labeling , Fluoresceins , Ethidium , Transplants , Biological Assay
2.
Cells ; 12(12)2023 06 14.
Article in English | MEDLINE | ID: mdl-37371094

ABSTRACT

Corneal endothelial diseases are the leading cause of corneal transplantation. The global shortage of donor corneas has resulted in the investigation of alternative methods, such as cell therapy and tissue-engineered endothelial keratoplasty (TEEK), using primary cultures of human corneal endothelial cells (hCECs). The main challenge is optimizing the hCEC culture process to increase the endothelial cell density (ECD) and overall yield while preventing endothelial-mesenchymal transition (EndMT). Fetal bovine serum (FBS) is necessary for hCEC expansion but contains TGF-ßs, which have been shown to be detrimental to hCECs. Therefore, we investigated various TGF-ß signaling pathways using inhibitors to improve hCEC culture. Initially, we confirmed that TGF-ß1, 2, and 3 induced EndMT on confluent hCECs without FBS. Using this TGF-ß-induced EndMT model, we validated NCAM as a reliable biomarker to assess EndMT. We then demonstrated that, in a culture medium containing 8% FBS for hCEC expansion, TGF-ß1 and 3, but not 2, significantly reduced the ECD and caused EndMT. TGF-ß receptor inhibition had an anti-EndMT effect. Inhibition of the ROCK pathway, notably that of the P38 MAPK pathway, increased the ECD, while inhibition of the ERK pathway decreased the ECD. In conclusion, the presence of TGF-ß1 and 3 in 8% FBS leads to a reduction in ECD and induces EndMT. The use of SB431542 or LY2109761 may prevent EndMT, while Y27632 or Ripasudil, and SB203580 or SB202190, can increase the ECD.


Subject(s)
Endothelial Cells , Transforming Growth Factor beta1 , Humans , Cells, Cultured , Endothelial Cells/metabolism , Epithelial-Mesenchymal Transition , Signal Transduction , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta1/metabolism , Cornea/cytology , Cornea/metabolism
3.
PLoS One ; 17(10): e0273807, 2022.
Article in English | MEDLINE | ID: mdl-36240204

ABSTRACT

Keratoconus (KC) is a multifactorial progressive ectatic disorder characterized by local thinning of the cornea, leading to decreased visual acuity due to irregular astigmatism and opacities. Despite the evolution of advanced imaging methods, the exact etiology of KC remains unknown. Our aim was to investigate the involvement of corneal epithelium in the pathophysiology of the disease. Corneal epithelial samples were collected from 23 controls and from 2 cohorts of patients with KC: 22 undergoing corneal crosslinking (early KC) and 6 patients before penetrating keratoplasty (advanced KC). The expression of genes involved in the epidermal terminal differentiation program and of the oxidative stress pathway was assessed by real time PCR analysis. Presence of some of the differentially expressed transcripts was confirmed at protein level using immunofluorescence on controls and advanced KC additional corneal samples. We found statistically significant under-expression in early KC samples of some genes known to be involved in the mechanical resistance of the epidermis (KRT16, KRT14, SPRR1A, SPRR2A, SPRR3, TGM1 and TGM5) and in oxidative stress pathways (NRF2, HMOX1 and HMOX2), as compared to controls. In advanced KC samples, expression of SPRR2A and HMOX1 was reduced. Decreased expression of keratin (KRT)16 and KRT14 proteins was observed. Moreover, differential localization was noted for involucrin, another protein involved in the epidermis mechanical properties. Finally, we observed an immunofluorescence staining for the active form of NRF2 in control epithelia that was reduced in KC epithelia. These results suggest a defect in the mechanical resistance and the oxidative stress defense possibly mediated via the NRF2 pathway in the corneal keratoconic epithelium.


Subject(s)
Epithelium, Corneal , Keratoconus , Cornea/metabolism , Cornified Envelope Proline-Rich Proteins/metabolism , Epithelium, Corneal/metabolism , Humans , Keratins/metabolism , Keratoconus/genetics , Keratoconus/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...