Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35584073

ABSTRACT

Despite rapid advancements over the past several years, the conditional generative adversarial networks (cGANs) are still far from being perfect. Although one of the major concerns of the cGANs is how to provide the conditional information to the generator, there are not only no ways considered as the optimal solution but also a lack of related research. This brief presents a novel convolution layer, called the conditional convolution (cConv) layer, which incorporates the conditional information into the generator of the generative adversarial networks (GANs). Unlike the most general framework of the cGANs using the conditional batch normalization (cBN) that transforms the normalized feature maps after convolution, the proposed method directly produces conditional features by adjusting the convolutional kernels depending on the conditions. More specifically, in each cConv layer, the weights are conditioned in a simple but effective way through filter-wise scaling and channel-wise shifting operations. In contrast to the conventional methods, the proposed method with a single generator can effectively handle condition-specific characteristics. The experimental results on CIFAR, LSUN, and ImageNet datasets show that the generator with the proposed cConv layer achieves a higher quality of conditional image generation than that with the standard convolution layer.

2.
IEEE Trans Neural Netw Learn Syst ; 32(1): 252-265, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32203033

ABSTRACT

Among the various generative adversarial network (GAN)-based image inpainting methods, a coarse-to-fine network with a contextual attention module (CAM) has shown remarkable performance. However, due to two stacked generative networks, the coarse-to-fine network needs numerous computational resources, such as convolution operations and network parameters, which result in low speed. To address this problem, we propose a novel network architecture called parallel extended-decoder path for semantic inpainting (PEPSI) network, which aims at reducing the hardware costs and improving the inpainting performance. PEPSI consists of a single shared encoding network and parallel decoding networks called coarse and inpainting paths. The coarse path produces a preliminary inpainting result to train the encoding network for the prediction of features for the CAM. Simultaneously, the inpainting path generates higher inpainting quality using the refined features reconstructed via the CAM. In addition, we propose Diet-PEPSI that significantly reduces the network parameters while maintaining the performance. In Diet-PEPSI, to capture the global contextual information with low hardware costs, we propose novel rate-adaptive dilated convolutional layers that employ the common weights but produce dynamic features depending on the given dilation rates. Extensive experiments comparing the performance with state-of-the-art image inpainting methods demonstrate that both PEPSI and Diet-PEPSI improve the qualitative scores, i.e., the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as significantly reduce hardware costs, such as computational time and the number of network parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...